scholarly journals Colloidal particle electrorotation in a nonuniform electric field

2018 ◽  
Vol 97 (1) ◽  
Author(s):  
Yi Hu ◽  
Petia M. Vlahovska ◽  
Michael J. Miksis
2013 ◽  
Vol 58 (3) ◽  
pp. 370-374 ◽  
Author(s):  
A. M. Boichenko ◽  
V. F. Tarasenko ◽  
E. Kh. Baksht ◽  
A. G. Burachenko ◽  
M. V. Erofeev ◽  
...  

2001 ◽  
Vol 700 ◽  
Author(s):  
Malinda M. Tupper ◽  
Marjorie E. Chopinaud ◽  
Takamichi Ogawa ◽  
Michael J. Cima

AbstractDispensing micron-scale dielectric materials can be achieved through the use of dielectrophoresis. Electrodes are designed to create a nonuniform electric field. This method is expected to be applicable for transfer of a wide range of dielectric powders as well as small, shaped components. Small, 150 μm diameter silica spheres, as well as sodium fluorescein powder have been dispensed by this method. Selecting the appropriate electrode geometry and electric field intensity controls the amount collected. As little as 1.0 μg of sodium fluorescein powder, and as much as 16 mg of silica beads have been collected, and repeatability within 10 % of the total amount dispensed has been achieved.


1990 ◽  
Vol 16 (4) ◽  
pp. 700-705 ◽  
Author(s):  
Takashi Hibiki ◽  
Manabu Yamaguchi ◽  
Takashi Katayama

2013 ◽  
Vol 58 (11) ◽  
pp. 1592-1599 ◽  
Author(s):  
S. O. Shiryaeva ◽  
A. I. Grigor’ev ◽  
A. A. Shiryaev

2002 ◽  
Author(s):  
J. Kadaksham ◽  
P. Singh ◽  
N. Aubry

A numerical method based on the distributed Lagrange Multiplier method (DLM) [2,8] is developed for direct simulations of electrorheological (ER) liquids subjected to spatially varying electric fields. The flow inside particle boundaries is constrained to be rigid body motion by the distributed Lagrange multiplier method. The point-dipole approximation [6] is used to model the electrostatic forces acting on the polarized particles. The code is verified by performing a convergence study that shows that the results are independent of mesh and time step sizes. In a spatially nonuniform electric field the particles move to the regions where the magnitude of electric field is locally maximum when the particle permittivity is greater than that of the liquid. On the other hand, when the particle permittivity is smaller than that of the liquid the particles move to the regions of local minimum of electric field.


Sign in / Sign up

Export Citation Format

Share Document