scholarly journals Dark Photon and Muon g−2 Inspired Inelastic Dark Matter Models at the High-Energy Intensity Frontier

2021 ◽  
Vol 126 (18) ◽  
Author(s):  
Yu-Dai Tsai ◽  
Patrick deNiverville ◽  
Ming Xiong Liu
Author(s):  
O. M. Salamov ◽  
F. F. Aliyev

The paper discusses the possibility of obtaining liquid and gaseous fuels from different types of biomass (BM) and combustible solid waste (CSW) of various origins. The available world reserves of traditional types of fuel are analyzed and a number of environmental shortcomings that created during their use are indicated. The tables present the data on the conditional calorific value (CCV) of the main traditional and alternative types of solid, liquid and gaseous fuels which compared with CCV of various types of BM and CSW. Possible methods for utilization of BM and CSW are analyzed, as well as the methods for converting them into alternative types of fuel, especially into combustible gases.Reliable information is given on the available oil and gas reserves in Azerbaijan. As a result of the research, it was revealed that the currently available oil reserves of Azerbaijan can completely dry out after 33.5 years, and gas reserves–after 117 years, without taking into account the growth rates of the exported part of these fuels to European countries. In order to fix this situation, first of all it is necessary to use as much as possible alternative and renewable energy sources, especially wind power plants (WPP) and solar photovoltaic energy sources (SFES) in the energy sector of the republic. Azerbaijan has large reserves of solar and wind energy. In addition, all regions of the country have large reserves of BM, and in the big cities, especially in industrial ones, there are CSW from which through pyrolysis and gasification is possible to obtain a high-quality combustible gas mixture, comprising: H2 + CO + CH4, with the least amount of harmful waste. The remains of the reaction of thermochemical decomposition of BM and CSW to combustible gases can also be used as mineral fertilizers in agriculture. The available and projected resources of Azerbaijan for the BM and the CSW are given, as well as their assumed energy intensity in the energy sector of the republic.Given the high energy intensity of the pyrolysis and gasification of the BM and CSW, at the present time for carrying out these reactions, the high-temperature solar installations with limited power are used as energy sources, and further preference is given to the use of WPP and SFES on industrial scale.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Amin Aboubrahim ◽  
Michael Klasen ◽  
Pran Nath

Abstract We present a particle physics model to explain the observed enhancement in the Xenon-1T data at an electron recoil energy of 2.5 keV. The model is based on a U(1) extension of the Standard Model where the dark sector consists of two essentially mass degenerate Dirac fermions in the sub-GeV region with a small mass splitting interacting with a dark photon. The dark photon is unstable and decays before the big bang nucleosynthesis, which leads to the dark matter constituted of two essentially mass degenerate Dirac fermions. The Xenon-1T excess is computed via the inelastic exothermic scattering of the heavier dark fermion from a bound electron in xenon to the lighter dark fermion producing the observed excess events in the recoil electron energy. The model can be tested with further data from Xenon-1T and in future experiments such as SuperCDMS.


2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Samuel J. Witte ◽  
Salvador Rosauro-Alcaraz ◽  
Samuel D. McDermott ◽  
Vivian Poulin

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Thomas G. Rizzo ◽  
George N. Wojcik

Abstract Extra dimensions have proven to be a very useful tool in constructing new physics models. In earlier work, we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario where the interactions of dark matter, taken to be, e.g., a complex scalar, with the brane-localized fields of the Standard Model (SM) are mediated by a massive U(1)D dark photon living in the bulk. These models were shown to have many novel features differentiating them from their 4-D analogs and which, in several cases, avoided some well-known 4-D model building constraints. However, these gains were obtained at the cost of the introduction of a fair amount of model complexity, e.g., dark matter Kaluza-Klein excitations. In the present paper, we consider an alternative setup wherein the dark matter and the dark Higgs, responsible for U(1)D breaking, are both localized to the ‘dark’ brane at the opposite end of the 5-D interval from where the SM fields are located with only the dark photon now being a 5-D field. The phenomenology of such a setup is explored for both flat and warped extra dimensions and compared to the previous more complex models.


2021 ◽  
Vol 103 (9) ◽  
Author(s):  
Manoranjan Dutta ◽  
Satyabrata Mahapatra ◽  
Debasish Borah ◽  
Narendra Sahu

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3775 ◽  
Author(s):  
Khaled Bawaneh ◽  
Farnaz Ghazi Nezami ◽  
Md. Rasheduzzaman ◽  
Brad Deken

Healthcare facilities in the United States account for 4.8% of the total area in the commercial sector and are responsible for 10.3% of total energy consumption in this sector. The number of healthcare facilities increased by 22% since 2003, leading to a 21% rise in energy consumption and an 8% reduction in energy intensity per unit of area (544.8 kWh/m2). This study provides an analytical overview of the end-use energy consumption data in healthcare systems for hospitals in the United States. The energy intensity of the U.S. hospitals ranges from 640.7 kWh/m2 in Zone 5 (very hot) to 781.1 kWh/m2 in Zone 1 (very cold), with an average of 738.5 kWh/m2. This is approximately 2.6 times higher than that of other commercial buildings. High energy intensity in the healthcare facilities, particularly in hospitals, along with energy costs and associated environmental concerns make energy analysis crucial for this type of facility. The proposed analysis shows that U.S. healthcare facilities have higher energy intensity than those of most other countries, especially the European ones. This necessitates the adoption of more energy-efficient approaches to the infrastructure and the management of healthcare facilities in the United States.


2015 ◽  
Vol 30 (18) ◽  
pp. 1550089 ◽  
Author(s):  
A. L. dos Santos ◽  
D. Hadjimichef

An extension of the Standard Model (SM) is studied, in which two new vector bosons are introduced, a first boson Z' coupled to the SM by the usual minimal coupling, producing an enlarged gauge sector in the SM. The second boson A' field, in the dark sector of the model, remains massless and originates a dark photon γ'. A hybrid mixing scenario is considered based on a combined Higgs and Stueckelberg mechanisms. In a Compton-like process, a photon scattered by a weakly interacting massive particles (WIMP) is converted into a dark photon. This process is studied, in an astrophysical application obtaining an estimate of the impact on stellar cooling of white dwarfs and neutron stars.


2002 ◽  
Vol 65 (7) ◽  
Author(s):  
V. Barger ◽  
Francis Halzen ◽  
Dan Hooper ◽  
Chung Kao

Sign in / Sign up

Export Citation Format

Share Document