scholarly journals Astrophysical aspects of milli-charged dark matter in a Higgs–Stueckelberg model

2015 ◽  
Vol 30 (18) ◽  
pp. 1550089 ◽  
Author(s):  
A. L. dos Santos ◽  
D. Hadjimichef

An extension of the Standard Model (SM) is studied, in which two new vector bosons are introduced, a first boson Z' coupled to the SM by the usual minimal coupling, producing an enlarged gauge sector in the SM. The second boson A' field, in the dark sector of the model, remains massless and originates a dark photon γ'. A hybrid mixing scenario is considered based on a combined Higgs and Stueckelberg mechanisms. In a Compton-like process, a photon scattered by a weakly interacting massive particles (WIMP) is converted into a dark photon. This process is studied, in an astrophysical application obtaining an estimate of the impact on stellar cooling of white dwarfs and neutron stars.

Author(s):  
A. L. DOS SANTOS ◽  
D. HADJIMICHEF

We investigate a double extension to the Standard Model (SM). A first extension introduces, via minimal coupling, a massive Z′ boson. This enlarged SM is coupled to a dark matter sector through the Stueckelberg mechanism by a A′ boson. However, the A′ boson does not interact directly with the SM fermions. In our study, we found that the A′ is a massless photon-like particle in dark sector. Constraints on the mass for Z′ and corrections to Z mass are obtained.


2019 ◽  
Vol 491 (1) ◽  
pp. 409-416
Author(s):  
Adrián Ayala ◽  
Ilidio Lopes ◽  
Antonio García Hernández ◽  
Juan Carlos Suárez ◽  
Íñigo Muñoz Elorza

ABSTRACT Dark photons are particles invoked in some extensions of the Standard Model that could account for at least part of the dark matter content of the Universe. It has been proposed that the production of dark photons in stellar interiors could happen at a rate that depends on both, the dark photon mass and its coupling to Standard Model particles (the kinetic mixing parameter χ). In this work, we aim at exploring the impact of dark photon productions in the stellar core of solar mass red giant branch (RGB) stars during late evolutionary phases. We demonstrate that near the so-called RGB bump, dark photons production may be an energy sink for the star sufficiently significative to modify the extension of the star convective zones. We show that Asteroseismology is able to detect such variations in the structure, allowing us to predict an upper limit of $\rm 900\ eV$ and 5 × 10−15 for the mass and kinetic mixing of the dark photons, respectively. We also demonstrate that additional constraints can be derived from the fact that dark photons increase the luminosity of the RGB tip over the current observational uncertainties. This work thus paves the way for an empirical approach to deepen the study of such dark matter particles.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Masahiro Ibe ◽  
Shin Kobayashi ◽  
Keiichi Watanabe

Abstract The asymmetric dark matter (ADM) scenario solves the baryon-dark matter coincidence problem when the dark matter (DM) mass is of $$ \mathcal{O}(1) $$ O 1 GeV. Composite ADM models based on QCD-like strong dynamics are particularly motivated since the strong dynamics naturally provides the DM mass of $$ \mathcal{O}(1) $$ O 1 GeV and the large annihilation cross-section simultaneously. In those models, the sub-GeV dark photon often plays an essential role in transferring the excessive entropy in the dark sector into the visible sector, i.e., the Standard Model sector. This paper constructs a chiral composite ADM model where the U(1)D gauge symmetry is embedded into the chiral flavor symmetry. Due to the dynamical breaking of the chiral flavor symmetry, the model naturally provides the masses of the dark photon and the dark pions in the sub-GeV range, both of which play crucial roles for a successful ADM model.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
C. Ahdida ◽  
◽  
A. Akmete ◽  
R. Albanese ◽  
A. Alexandrov ◽  
...  

Abstract Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with αD = 0.1 and mA′ = 3mχ, we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 · 1020 protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Debasish Borah ◽  
Suruj Jyoti Das ◽  
Abhijit Kumar Saha

AbstractWe study the possibility of realising cosmic inflation, dark matter (DM), baryon asymmetry of the universe (BAU) and light neutrino masses in non-supersymmetric minimal gauged $$B-L$$ B - L extension of the standard model with three right handed neutrinos. The singlet scalar field responsible for spontaneous breaking of $$B-L$$ B - L gauge symmetry also plays the role of inflaton by virtue of its non-minimal coupling to gravity. While the lightest right handed neutrino is the DM candidate, being stabilised by an additional $$Z_2$$ Z 2 symmetry, we show by performing a detailed renormalisation group evolution (RGE) improved study of inflationary dynamics that thermal DM is generally overproduced due to insufficient annihilations through gauge and scalar portals. This happens due to strict upper limits obtained on gauge and other dimensionless couplings responsible for DM annihilation while assuming the non-minimal coupling to gravity to be at most of order unity. The non-thermal DM scenario is viable, with or without $$Z_2$$ Z 2 symmetry, although in such a case the $$B-L$$ B - L gauge sector remains decoupled from the inflationary dynamics due to tiny couplings. We also show that the reheat temperature predicted by the model prefers non-thermal leptogenesis with hierarchical right handed neutrinos while being consistent with other requirements.


2017 ◽  
Vol 26 (03) ◽  
pp. 1730007 ◽  
Author(s):  
Nick E. Mavromatos ◽  
Carlos R. Argüelles ◽  
Remo Ruffini ◽  
Jorge A. Rueda

Self-interacting dark matter (SIDM) is a hypothetical form of dark matter (DM), characterized by relatively strong (compared to the weak interaction strength) self-interactions (SIs), which has been proposed to resolve a number of issues concerning tensions between simulations and observations at the galactic or smaller scales. We review here some recent developments discussed at the 14th Marcel Grossmann Meeting (MG14), paying particular attention to restrictions on the SIDM (total) cross-section from using novel observables in merging galactic structures, as well as the rôle of SIDM on the Milky Way halo and its central region. We report on some interesting particle-physics inspired SIDM models that were discussed at MG14, namely the glueball DM, and a right-handed neutrino DM (with mass of a few tens of keV, that may exist in minimal extensions of the standard model (SM)), interacting among themselves via vector bosons mediators in the dark sector. A detailed phenomenology of the latter model on galactic scales, as well as the potential role of the right handed neutrinos in alleviating some of the small-scale cosmology problems, namely the discrepancies between observations and numerical simulations within standard [Formula: see text]CDM and [Formula: see text]WDM cosmologies are reported.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Amin Aboubrahim ◽  
Michael Klasen ◽  
Pran Nath

Abstract We present a particle physics model to explain the observed enhancement in the Xenon-1T data at an electron recoil energy of 2.5 keV. The model is based on a U(1) extension of the Standard Model where the dark sector consists of two essentially mass degenerate Dirac fermions in the sub-GeV region with a small mass splitting interacting with a dark photon. The dark photon is unstable and decays before the big bang nucleosynthesis, which leads to the dark matter constituted of two essentially mass degenerate Dirac fermions. The Xenon-1T excess is computed via the inelastic exothermic scattering of the heavier dark fermion from a bound electron in xenon to the lighter dark fermion producing the observed excess events in the recoil electron energy. The model can be tested with further data from Xenon-1T and in future experiments such as SuperCDMS.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Soo-Min Choi ◽  
Hyun Min Lee ◽  
Bin Zhu

Abstract We consider a novel mechanism to realize exothermic dark matter with dark mesons in the limit of approximate flavor symmetry in a dark QCD. We introduce a local dark U(1)′ symmetry to communicate between dark mesons and the Standard Model via Z′ portal by partially gauging the dark flavor symmetry with flavor-dependent charges for cancelling chiral anomalies in the dark sector. After the dark local U(1)′ is broken spontaneously by the VEV of a dark Higgs, there appear small mass splittings between dark quarks, consequently, leading to small split masses for dark mesons, required to explain the electron recoil excess in XENON1T by the inelastic scattering between dark mesons and electron. We propose a concrete benchmark model for split dark mesons based on SU(3)L× SU(3)R/SU(3)V flavor symmetry and SU(Nc) color group and show that there exists a parameter space making a better fit to the XENON1T data with two correlated peaks from exothermic processes and satisfying the correct relic density, current experimental and theoretical constraints.


2016 ◽  
Vol 31 (18) ◽  
pp. 1630027
Author(s):  
Ikuo S. Sogami

With multi-spinor fields which behave as triple-tensor products of the Dirac spinors, the Standard Model is extended so as to embrace three families of ordinary quarks and leptons in the visible sector and an additional family of exotic quarks and leptons in the dark sector of our Universe. Apart from the gauge and Higgs fields of the Standard Model symmetry G, new gauge and Higgs fields of a symmetry isomorphic to G are postulated to exist in the dark sector. It is the bi-quadratic interaction between visible and dark Higgs fields that opens a main portal to the dark sector. Breakdowns of the visible and dark electroweak symmetries result in the Higgs boson with mass 125 GeV and a new boson which can be related to the diphoton excess around 750 GeV. Subsequent to a common inflationary phase and a reheating period, the visible and dark sectors follow weakly-interacting paths of thermal histories. We propose scenarios for dark matter in which no dark nuclear reaction takes place. A candidate for the main component of the dark matter is a stable dark hadron with spin 3/2, and the upper limit of its mass is estimated to be 15.1 GeV/c2.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Mauro Raggi ◽  
Venelin Kozhuharov

Photon-like particles are predicted in many extensions of the Standard Model. They have interactions similar to the photon, are vector bosons, and can be produced together with photons. The present paper proposes a search for such particles in thee+e-→Uγprocess in a positron-on-target experiment, exploiting the positron beam of the DAΦNE linac at the Laboratori Nazionali di Frascati, INFN. In one year of running a sensitivity in the relative interaction strength down to ~10−6is achievable, in the mass region from 2.5 MeV<MU<20 MeV. The proposed experimental setup and the analysis technique are discussed.


Sign in / Sign up

Export Citation Format

Share Document