Curvature Determination of Spinodal Interface in a Condensed Matter System

1997 ◽  
Vol 78 (11) ◽  
pp. 2248-2251 ◽  
Author(s):  
Hiroshi Jinnai ◽  
Tsuyoshi Koga ◽  
Yukihiro Nishikawa ◽  
Takeji Hashimoto ◽  
Stephen T. Hyde
2009 ◽  
Vol 6 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Bella Lake ◽  
Alexei M. Tsvelik ◽  
Susanne Notbohm ◽  
D. Alan Tennant ◽  
Toby G. Perring ◽  
...  

2020 ◽  
Vol 34 (19n20) ◽  
pp. 2040049
Author(s):  
Luogen Xu ◽  
J. T. Lee ◽  
J. K. Freericks

The variational quantum eigensolver has been proposed as a low-depth quantum circuit that can be employed to examine strongly correlated systems on today’s noisy intermediate-scale quantum computers. We examine details associated with the factorized form of the unitary coupled-cluster variant of this algorithm. We apply it to a simple strongly correlated condensed-matter system with nontrivial behavior — the four-site Hubbard model at half-filling. This work show some of the subtle issues one needs to take into account when applying this algorithm in practice, especially to condensed-matter systems.


2019 ◽  
Vol 35 (02) ◽  
pp. 1950352 ◽  
Author(s):  
Siddhartha Sen ◽  
Kumar S. Gupta

Some observable consequences that follow from a fiber bundle description of a tight binding condensed matter system on a lattice are described. The geometrical picture can be extended to describe non-periodic lattice structures, where a single Brillouin zone is predicted.


1999 ◽  
Vol 59 (3) ◽  
pp. R2554-R2557 ◽  
Author(s):  
Hiroshi Jinnai ◽  
Yukihiro Nishikawa ◽  
Takeji Hashimoto

1994 ◽  
Vol 08 (19) ◽  
pp. 1163-1173
Author(s):  
ALESSANDRO CORDELLI

Numerical simulation techniques play a very important role in solid state physics, in particular, as far as the determination of electronic and vibrational structure of non-periodic systems is concerned. The basis of these techniques is the construction of a random Hamiltonian and a random state of interest; to do that, standard congruential algorithms for the generation of pseudorandom numbers are commonly used. The aim of this paper is to propose a novel, alternative way for the generation of random operators and vectors. This technique, based on the concept of minimum correlation sequence, gives results equivalent to or better than the standard approach.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
G. Li ◽  
J. R. Gladden

The measurement of elastic constants plays an important role in condensed matter physics and materials characterization. This paper presents the resonant ultrasound spectroscopy (RUS) method for the determination of elastic constants in a single crystal or amorphous solid. In RUS, the measured resonance spectrum of a properly prepared sample and other information such as geometry, density, and initial estimated elastic constants are used to determine the elastic constants of the material. We briefly present the theoretical background and applications to specific materials; however, the focus of this review is on the technical applications of RUS, especially those for high-temperature measurements.


2001 ◽  
Vol 15 (10n11) ◽  
pp. 1621-1640 ◽  
Author(s):  
D. M. STAMPER-KURN ◽  
A. P. CHIKKATUR ◽  
A. GÖRLITZ ◽  
S. GUPTA ◽  
S. INOUYE ◽  
...  

Gaseous Bose-Einstein condensates are a macroscopic condensed-matter system which can be understood from a microscopic, atomic basis. We present examples of how the optical tools of atomic physics can be used to probe properties of this system. In particular, we describe how stimulated light scattering can be used to measure the coherence length of a condensate, to measure its excitation spectrum, and to reveal the presence of pair excitations in the many-body condensate wavefunction.


1997 ◽  
Vol 499 ◽  
Author(s):  
T. W. Barbee ◽  
D. A. Young ◽  
F. J. Rogers

ABSTRACTRecent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T∼Tfermi. We seek to “connect up” these two regimes by using ab initio finite temperature methods (including linear-response[l] based phonon calculations) to derive an equation of state of condensed matter for T<Tfermi.We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T> 104K, and compare our results with available experimental data.


2017 ◽  
Vol 26 (2) ◽  
pp. 27 ◽  
Author(s):  
Félix L. Avilés ◽  
Elmer Monteblanco ◽  
Abel Gutarra

ABSTRACTThis paper describes the implementation and a detailed optimization of a Vibrating Sample Magnetometer (VSM) for an undergraduate physics course laboratory. The VSM operation parameters were extensively discussed using Foner and Mallison coils configuration. The influence of the involved parameters (e.g. oscillation frequency, oscillation amplitude, rate change of the external magnetic field, coils configuration, etc.) on the induced voltage in the pick-up coils were discussed. A disk of nickel of 6-mm diameter was used for the calibration of the magnetometer, comparing the hysteresis loop measured with our magnetometer with the one obtained using a commercial VSM. Magnetization curves of two different samples were obtained in order to test the sensitivity of the magnetometer. The vibrating sample magnetometer implemented in the present work is able to detect changes in the total magnetic moment down to 10-3 emu. The detailed optimization of the VSM described in the present work is an example of how to solve a real problem in condensed matter, related to the determination of the magnetization value of a magnetic sample. Keywords.- : Vibrating sample magnetometer, Magnetometry, Instrumentation. RESUMEN Este artículo describe la implementación y una optimización detallada de un magnetómetro de muestra vibrante (VSM) para un laboratorio de licenciatura en física. Los parámetros de operación de VSM se discutieron ampliamente usando la configuración de bobinas de Foner y Mallison. Se discutió la influencia de los parámetros implicados (por ejemplo, frecuencia de oscilación, amplitud de oscilación, cambio de velocidad del campo magnético externo, configuración de bobinas, etc.) sobre la tensión inducida en las bobinas de captación. Se utilizó un disco de níquel de 6 mm de diámetro para la calibración del magnetómetro, comparando el bucle de histéresis medido con nuestro magnetómetro con el obtenido utilizando un VSM comercial. Se obtuvieron curvas de magnetización de dos muestras diferentes para probar la sensibilidad del magnetómetro. El magnetómetro de muestra vibrante implementado en el presente trabajo es capaz de detectar cambios en el momento magnético total hasta 10-3 emu. La optimización detallada del VSM descrita en el presente trabajo es un ejemplo de cómo resolver un problema real en materia condensada, relacionado con la determinación del valor de magnetización de una muestra magnética. Palabras clave.-Magnetómetro de muestra vibrante, Magnetometría, Instrumentación,


Sign in / Sign up

Export Citation Format

Share Document