Application of an Electric Field to Colloidal Particles Suspended in a Liquid-Crystal Solvent

2001 ◽  
Vol 87 (16) ◽  
Author(s):  
J. C. Loudet ◽  
P. Poulin
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun-Yong Lee ◽  
Jeong-Seon Yu ◽  
Jong-Hyun Kim

Abstract Colloidal particles dispersed in nematic liquid crystals are aligned along the orientation that minimizes the elastic free energy. Through applying an electric field to a nematic colloidal system, the orientation of the director can change. Consequently, colloidal particles realign to minimize the total free energy, which is the sum of the elastic and electric free energies. Herein, we demonstrate that if the preferred rotation directions given by the electric and elastic free energies are different during realignment, the rotation direction of the particle can be controlled by how we apply the electric field. When the strength of the electric field gradually increases, the particles rotate in the same direction as the rotation of the director. However, when a sufficiently high electric field is suddenly applied, the particles rotate in the opposite direction. In this study, we analyzed the effect of free energy on the bidirectional rotation behavior of the particles using a theoretical model. This study provides an effective approach to control the rotational behavior of colloidal particles over a wide-angle range between two orientational local minima.


1972 ◽  
Vol 33 (C1) ◽  
pp. C1-63-C1-67 ◽  
Author(s):  
M. BERTOLOTTI ◽  
B. DAINO ◽  
P. Di PORTO ◽  
F. SCUDIERI ◽  
D. SETTE

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 732
Author(s):  
Anna P. Gardymova ◽  
Mikhail N. Krakhalev ◽  
Victor Ya. Zyryanov ◽  
Alexandra A. Gruzdenko ◽  
Andrey A. Alekseev ◽  
...  

The electro-optical properties of polymer dispersed liquid crystal (PDLC) films are highly dependent on the features of the contained liquid crystal (LC) droplets. Cholesteric LC droplets with homeotropic boundaries can form several topologically different orientational structures, including ones with single and more point defects, layer-like, and axisymmetric twisted toroidal structures. These structures are very sensitive to an applied electric field. In this work, we have demonstrated experimentally and by computer simulations that twisted toroidal droplets reveal strong structural response to the electric field. In turn, this leads to vivid changes in the optical texture in crossed polarizers. The response of droplets of different sizes were found to be equivalent in terms of dimensionless parameters. In addition, the explanation of this phenomenon showed a comparison of theoretical and experimental structural response curves aids to determine the shape of the droplet. Finally, we demonstrated that the addition of a dichroic dye allows such films to be used as optical filters with adjustable color even without polarizers.


1995 ◽  
Author(s):  
Beatrys M. Lacquet ◽  
Pieter L. Swart ◽  
Stephanus J. Spammer

2019 ◽  
Vol 9 (4) ◽  
pp. 644
Author(s):  
Xue-Shi Li ◽  
Naixing Feng ◽  
Yuan-Mei Xu ◽  
Liang-Lun Cheng ◽  
Qing Liu

A tunable demultiplexer with three output channels infiltrated by liquid crystal (LC) is presented, which is based on a metal-insulator-metal (MIM) waveguide. The operating frequencies of the three output channels can be tuned simultaneously at will by changing the external bias electric field applied to the LC. By analyzing the Fabry-Pérot (FP) resonance modes of the finite-length MIM waveguide both theoretically and numerically, the locations of the three channels are delicately determined to achieve the best demultiplexing effects. Terahertz (THz) signals input from the main channel can be demultiplexed by channels 1, 2 and 3 at 0.7135 THz, 1.068 THz and 1.429 THz, respectively. By applying an external electric field to alter the tilt angle of the infiltrating LC material, the operating frequencies of channels 1, 2 and 3 can be relatively shifted up to 12.3%, 9.6% and 9.7%, respectively. The designed demultiplexer can not only provide a flexible means to demultiplex signals but also tune operating bands of output channels at the same time.


2020 ◽  
Vol 10 (6) ◽  
pp. 780-787
Author(s):  
Hongyue Gao ◽  
Suna Li ◽  
Jicheng Liu ◽  
Wen Zhou ◽  
Fan Xu ◽  
...  

In this paper, we studied the holographic properties of liquid crystal (LC) thin film doped with carbon dots (CDs) which can be used as real-time holographic display screen. The maximum value of diffraction efficiency can reach up to 30% by using a low applied electric field 0.2 V/μm. Holograms in the LC film can be dynamically formed and self-erased. The hologram build-up time and the hologram self-erasure time in the material is fast enough to realize video refresh rate. In addition, the forming process of hologram was studied. The holographic diffraction efficiency was measured depending on the intensity of recording light, applied electric field, the intensity of readout light, and readout light polarization direction. Triple enhancement of the diffraction efficiency value by the modulation of voltage under the condition of low recording energy is presented. Therefore, we develop an easy way to obtain real-time dynamic holographic red, green and blue displays with high diffraction efficiency, which allow the LC film doped with CDs to be used as a holographic 3D display screen.


Sign in / Sign up

Export Citation Format

Share Document