scholarly journals Oxygen Vacancies as Active Sites for Water Dissociation on RutileTiO2(110)

2001 ◽  
Vol 87 (26) ◽  
Author(s):  
R. Schaub ◽  
P. Thostrup ◽  
N. Lopez ◽  
E. Lægsgaard ◽  
I. Stensgaard ◽  
...  
2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Long Lin ◽  
Linwei Yao ◽  
Shaofei Li ◽  
Zhengguang Shi ◽  
Kun Xie ◽  
...  

AbstractFinding the active sites of suitable metal oxides is a key prerequisite for detecting CH$$_4$$ 4 . The purpose of the paper is to investigate the adsorption of CH$$_4$$ 4 on intrinsic and oxygen-vacancies CuO (111) and (110) surfaces using density functional theory calculations. The results show that CH$$_4$$ 4 has a strong adsorption energy of −0.370 to 0.391 eV at all site on the CuO (110) surface. The adsorption capacity of CH$$_4$$ 4 on CuO (111) surface is weak, ranging from −0.156 to −0.325 eV. In the surface containing oxygen vacancies, the adsorption capacity of CuO surface to CH$$_4$$ 4 is significantly stronger than that of intrinsic CuO surface. The results indicate that CuO (110) has strong adsorption and charge transfer capacity for CH$$_4$$ 4 , which may provide experimental guidance.


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


2020 ◽  
Vol 8 (16) ◽  
pp. 7870-7879 ◽  
Author(s):  
Rongming Xu ◽  
Qinghua Ji ◽  
Pin Zhao ◽  
Meipeng Jian ◽  
Chao Xiang ◽  
...  

An ultrahigh arsenic uptake capacity was achieved using a hierarchically porous UiO-66 with tunable mesopores and active sites.


2020 ◽  
Vol 44 (5) ◽  
pp. 1703-1706 ◽  
Author(s):  
Xiaoshuang Zhang ◽  
Xiaoqiang Du

Experimental and DFT calculation results show that the presence of oxygen vacancies can decrease the adsorption energy of intermediates at active sites and facilitate the adsorption of intermediates, thus improving the catalytic properties.


2019 ◽  
Vol 48 (27) ◽  
pp. 10116-10121 ◽  
Author(s):  
Xiaoqiang Du ◽  
Guangyu Ma ◽  
Xiaoshuang Zhang

Experimental and DFT calculation results show that the presence of oxygen vacancies can decrease the adsorption energy of intermediates at active sites and facilitate the adsorption of intermediates, thus improving the catalytic properties.


2020 ◽  
Vol 4 (1) ◽  
pp. 164-170 ◽  
Author(s):  
Shijian Luo ◽  
Xiaoman Li ◽  
Wanguo Gao ◽  
Haiqiang Zhang ◽  
Min Luo

MOF-derived C@NiO@Ni are proposed as an efficient electrocatalyst for N2 reduction reaction in alkaline media. Abundant oxygen vacancies and NiO/Ni interfaces can act as active sites for adsorbing nitrogen and proton, respectively.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 397 ◽  
Author(s):  
Mohammadreza Elahifard ◽  
Mohammad Reza Sadrian ◽  
Amir Mirzanejad ◽  
Reza Behjatmanesh-Ardakani ◽  
Seyedsaeid Ahmadvand

Oxygen deficiency (O-vacancy) contributes to the photoefficiency of TiO2 semiconductors by generating electron rich active sites. In this paper, the dispersion of O-vacancies in both bulk and surface of anatase and rutile phases was computationally investigated. The results showed that the O-vacancies dispersed in single- and double-cluster forms in the anatase and rutile phases, respectively, in both bulk and surface. The distribution of the O-vacancies was (roughly) homogeneous in anatase, and heterogenous in rutile bulk. The O-vacancy formation energy, width of defect band, and charge distribution indicated the overlap of the defect states in the rutile phase and thus eased the formation of clusters. Removal of the first and the second oxygen atoms from the rutile surface took less energy than the anatase one, which resulted in a higher deficiency concentration on the rutile surface. However, these deficiencies formed one active site per unit cell of rutile. On the other hand, the first O-vacancy formed on the surface and the second one formed in the subsurface of anatase (per unit cell). Supported by previous studies, we argue that this distribution of O-vacancies in anatase (surface and subsurface) could potentially create more active sites on its surface.


2019 ◽  
Vol 7 (39) ◽  
pp. 22274-22278 ◽  
Author(s):  
Chenchen Feng ◽  
Qi Zhou ◽  
Bin Zheng ◽  
Xiang Cheng ◽  
Yajun Zhang ◽  
...  

Spinel-structured NiCo2O4 nanosheets with dual-metal active sites, an ultrathin structure, and abundant oxygen vacancies were decorated for the first time on a BiVO4 photoanode for highly efficient PEC water oxidation.


2020 ◽  
Vol 44 (20) ◽  
pp. 8176-8182 ◽  
Author(s):  
Xiaoshuang Zhang ◽  
Hui Su ◽  
Xiaoqiang Du

Experimental and DFT calculation results show that the presence of oxygen vacancies can decrease the adsorption energy of intermediates at active sites and facilitate their adsorption, thus improving the catalytic properties.


Sign in / Sign up

Export Citation Format

Share Document