scholarly journals Observing a changing Hilbert-space inner product

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Salini Karuvade ◽  
Abhijeet Alase ◽  
Barry C. Sanders
Keyword(s):  
2021 ◽  
pp. 1-66
Author(s):  
Akio Ito

This paper deals with a nonlinear system (S) composed of three PDEs and one ODE below: [Formula: see text] The system (S) was proposed as one of the mathematical models which describe tumor invasion phenomena with chemotaxis effects. The most important and interesting point is that the diffusion coefficient of tumor cells, denoted by [Formula: see text], is influenced by both nonlocal effect of a chemical attractive substance, denoted by [Formula: see text], and the local one of extracellular matrix, denoted by [Formula: see text]. From this point, the first PDE in (S) contains a nonlinear cross diffusion. Actually, this mathematical setting gives an inner product of a suitable real Hilbert space, which governs the dynamics of the density of tumor cells [Formula: see text], a quasi-variational structure. Hence, the first purpose in this paper is to make it clear what this real Hilbert space is. After this, we show the existence of strong time local solutions to the initial-boundary problems associated with (S) when the space dimension is [Formula: see text] by applying the general theory of evolution inclusions on real Hilbert spaces with quasi-variational structures. Moreover, for the case [Formula: see text] we succeed in constructing a strong time global solution.


1962 ◽  
Vol 14 ◽  
pp. 651-659 ◽  
Author(s):  
Bohdan J. Tomiuk

If A is an H*-algebra, then the orthogonal complement of a closed right (left) ideal I is a closed right (left) ideal P. Saworotnow (7) considered Banach algebras which are Hilbert spaces and in which the closed right ideals satisfy the complementation property of an H*-algebra. In our right complemented Banach algebras we drop the requirement of the existence of an inner product and only assume that for every closed right ideal I there is a closed right ideal IP which behaves like the orthogonal complement in a Hilbert space (Definition 1). Thus our algebras may be considered as a generalization of Saworotnow's right complemented algebras.


1973 ◽  
Vol 16 (3) ◽  
pp. 455-456
Author(s):  
I. M. Michael

Let H be a Hilbert space with inner product 〈,). A well-known theorem of von Neumann states that, if S is a symmetric operator in H, then S has a selfadjoint extension in H if and only if S has equal deficiency indices. This result was extended by Naimark, who proved that, even if the deficiency indices of S are unequal, there always exists a Hilbert space H1 such that H ⊆ H1 and S has a selfadjoint extension in H1.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 471 ◽  
Author(s):  
Ali Mostafazadeh

A non-Hermitian operator H defined in a Hilbert space with inner product ⟨ · | · ⟩ may serve as the Hamiltonian for a unitary quantum system if it is η -pseudo-Hermitian for a metric operator (positive-definite automorphism) η . The latter defines the inner product ⟨ · | η · ⟩ of the physical Hilbert space H η of the system. For situations where some of the eigenstates of H depend on time, η becomes time-dependent. Therefore, the system has a non-stationary Hilbert space. Such quantum systems, which are also encountered in the study of quantum mechanics in cosmological backgrounds, suffer from a conflict between the unitarity of time evolution and the unobservability of the Hamiltonian. Their proper treatment requires a geometric framework which clarifies the notion of the energy observable and leads to a geometric extension of quantum mechanics (GEQM). We provide a general introduction to the subject, review some of the recent developments, offer a straightforward description of the Heisenberg-picture formulation of the dynamics for quantum systems having a time-dependent Hilbert space, and outline the Heisenberg-picture formulation of dynamics in GEQM.


2010 ◽  
Vol 07 (03) ◽  
pp. 485-503 ◽  
Author(s):  
P. ANIELLO ◽  
J. CLEMENTE-GALLARDO ◽  
G. MARMO ◽  
G. F. VOLKERT

The geometrical description of a Hilbert space associated with a quantum system considers a Hermitian tensor to describe the scalar inner product of vectors which are now described by vector fields. The real part of this tensor represents a flat Riemannian metric tensor while the imaginary part represents a symplectic two-form. The immersion of classical manifolds in the complex projective space associated with the Hilbert space allows to pull-back tensor fields related to previous ones, via the immersion map. This makes available, on these selected manifolds of states, methods of usual Riemannian and symplectic geometry. Here, we consider these pulled-back tensor fields when the immersed submanifold contains separable states or entangled states. Geometrical tensors are shown to encode some properties of these states. These results are not unrelated with criteria already available in the literature. We explicitly deal with some of these relations.


Author(s):  
K. V. Bhagwat ◽  
R. Subramanian

One of the most fruitful – and natural – ways of introducing a partial order in the set of bounded self-adjoint operators in a Hilbert space is through the concept of a positive operator. A bounded self-adjoint operator A denned on is called positive – and one writes A ≥ 0 - if the inner product (ψ, Aψ) ≥ 0 for every ψ ∈ . If, in addition, (ψ, Aψ) = 0 only if ψ = 0, then A is called positive-definite and one writes A > 0. Further, if there exists a real number γ > 0 such that A — γI ≥ 0, I being the unit operator, then A is called strictly positive (in symbols, A ≫ 0). In a finite dimensional space, a positive-definite operator is also strictly positive.


2018 ◽  
Vol 1 (1) ◽  
pp. 60
Author(s):  
Razis Aji Saputro ◽  
Susilo Hariyanto ◽  
Y.D. Sumanto

Pre-Hilbert space is a vector space equipped with an inner-product. Furthermore, if each Cauchy sequence in a pre-Hilbert space is convergent then it can be said complete and it called as Hilbert space. The accretive operator is a linear operator in a Hilbert space. Accretive operator is occurred if the real part of the corresponding inner product will be equal to zero or positive. Accretive operators are also associated with non-negative self-adjoint operators. Thus, an accretive operator is said to be strict if there is a positive number such that the real part of the inner product will be greater than or equal to that number times to the squared norm value of any vector in the corresponding Hilbert Space. In this paper, we prove that a strict accretive operator is an accretive operator.


2016 ◽  
Vol 2 ◽  
pp. e50 ◽  
Author(s):  
Nicolas Durrande ◽  
James Hensman ◽  
Magnus Rattray ◽  
Neil D. Lawrence

We consider the problem of detecting and quantifying the periodic component of a function given noise-corrupted observations of a limited number of input/output tuples. Our approach is based on Gaussian process regression, which provides a flexible non-parametric framework for modelling periodic data. We introduce a novel decomposition of the covariance function as the sum of periodic and aperiodic kernels. This decomposition allows for the creation of sub-models which capture the periodic nature of the signal and its complement. To quantify the periodicity of the signal, we derive a periodicity ratio which reflects the uncertainty in the fitted sub-models. Although the method can be applied to many kernels, we give a special emphasis to the Matérn family, from the expression of the reproducing kernel Hilbert space inner product to the implementation of the associated periodic kernels in a Gaussian process toolkit. The proposed method is illustrated by considering the detection of periodically expressed genes in thearabidopsisgenome.


2008 ◽  
Vol 39 (4) ◽  
pp. 347-352 ◽  
Author(s):  
Gyan Prakash Tripathi ◽  
Nand Lal

A bounded linear operator $ T $ on a Hilbert space $ H $ is called antinormal if the distance of $ T $ from the set of all normal operators is equal to norm of $ T $. In this paper, we give a complete characterization of antinormal composition operators on $ \ell^2 $, where $ \ell^2 $ is the Hilbert space of all square summable sequences of complex numbers under standard inner product on it.


Sign in / Sign up

Export Citation Format

Share Document