scholarly journals The Role of Plasma Membrane Intrinsic Protein Aquaporins in Water Transport through Roots: Diurnal and Drought Stress Responses Reveal Different Strategies between Isohydric and Anisohydric Cultivars of Grapevine

2008 ◽  
Vol 149 (1) ◽  
pp. 445-460 ◽  
Author(s):  
Rebecca K. Vandeleur ◽  
Gwenda Mayo ◽  
Megan C. Shelden ◽  
Matthew Gilliham ◽  
Brent N. Kaiser ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


2019 ◽  
Vol 20 (15) ◽  
pp. 3777 ◽  
Author(s):  
Seyed Abdollah Hosseini ◽  
Elise Réthoré ◽  
Sylvain Pluchon ◽  
Nusrat Ali ◽  
Bastien Billiot ◽  
...  

Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance.


2020 ◽  
Vol 102 (4) ◽  
pp. 779-796 ◽  
Author(s):  
Siyu Liu ◽  
Tatsuya Fukumoto ◽  
Patrizia Gena ◽  
Peng Feng ◽  
Qi Sun ◽  
...  

2005 ◽  
Vol 17 (8) ◽  
pp. 2384-2396 ◽  
Author(s):  
Chun-Peng Song ◽  
Manu Agarwal ◽  
Masaru Ohta ◽  
Yan Guo ◽  
Ursula Halfter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document