scholarly journals Role of an Arabidopsis AP2/EREBP-Type Transcriptional Repressor in Abscisic Acid and Drought Stress Responses

2005 ◽  
Vol 17 (8) ◽  
pp. 2384-2396 ◽  
Author(s):  
Chun-Peng Song ◽  
Manu Agarwal ◽  
Masaru Ohta ◽  
Yan Guo ◽  
Ursula Halfter ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


2007 ◽  
Vol 145 (3) ◽  
pp. 853-862 ◽  
Author(s):  
Marina Efetova ◽  
Jürgen Zeier ◽  
Markus Riederer ◽  
Chil-Woo Lee ◽  
Nadja Stingl ◽  
...  

2006 ◽  
Vol 18 (10) ◽  
pp. 2749-2766 ◽  
Author(s):  
Yuchen Miao ◽  
Dong Lv ◽  
Pengcheng Wang ◽  
Xue-Chen Wang ◽  
Jia Chen ◽  
...  

2019 ◽  
Vol 20 (15) ◽  
pp. 3777 ◽  
Author(s):  
Seyed Abdollah Hosseini ◽  
Elise Réthoré ◽  
Sylvain Pluchon ◽  
Nusrat Ali ◽  
Bastien Billiot ◽  
...  

Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance.


2009 ◽  
Vol 64 (1-2) ◽  
pp. 77-84 ◽  
Author(s):  
Hala Ezzat Mohamed ◽  
Ghada Saber M. Ismail

The changes in plant growth, transpiration rate, photosynthetic activity, plant pigments, electrolyte leakage, H2O2 content, lipid peroxidation, catalase activity and endogenous content of abscisic acid (ABA) were followed in the leaves of two wheat varieties (sakha 93 and 94) during drought stress and subsequent rehydration. Drought stress caused several inhibitory changes in the growth of both wheat varieties, particularly in sakha 94. Exogenous ABA treatment improved the growth of sakha 93 plants as indicated by a higher relative water content, transpiration rate and lower electrolyte leakage and also enhanced the growth during the recovery period. Such improvement may be the result of the induction of enzymatic (catalase) and non-enzymatic (carotenoid) systems. ABA treatment did not ameliorate the negative effect of drought on the growth of sakha 94.


HortScience ◽  
2010 ◽  
Vol 45 (6) ◽  
pp. 925-933 ◽  
Author(s):  
Nicole L. Waterland ◽  
John J. Finer ◽  
Michelle L. Jones

Drought stress during the shipping and retailing of floriculture crops can reduce postproduction shelf life and marketability. The plant hormone abscisic acid (ABA) mediates drought stress responses by closing stomata and reducing water loss. Applications of exogenous s-ABA effectively reduce water loss and allow a variety of species to survive temporary periods of drought stress. Unfortunately, s-ABA application can also lead to leaf chlorosis, which reduces the overall quality of economically important bedding plant species, including Viola ×wittrockiana (pansy). The goal of this research was to determine how to prevent s-ABA-induced leaf chlorosis in pansy and a closely related species, Viola cornuta (viola). All concentrations of both spray (250 or 500 mg·L−1) and drench (125 or 250 mg·L−1) s-ABA applications induced leaf yellowing. Young plants at the plug stage and 11-cm finished plants with one to two open flowers were further evaluated to determine if the developmental stage of the plants influenced s-ABA effectiveness or the development of negative side effects. Both plugs and finished pansies and violas developed leaf chlorosis after s-ABA applications, but symptoms were generally more severe in finished plants. The individual application of benzyladenine (BA), gibberellic acid (GA4+7), or the ethylene perception inhibitor, 1-methylcyclopropene, before s-ABA application had no effect on the development of s-ABA-induced leaf chlorosis. However, applications of 5 or 10 mg·L−1 BA and GA4+7 as a mixture (BA + GA4+7) before a drench or spray application of s-ABA prevented leaf chlorosis. The application of s-ABA and BA + GA4+7 would allow floriculture crops to tolerate temporary periods of drought stress without any loss of postproduction quality.


1996 ◽  
pp. 131-139 ◽  
Author(s):  
Elizabeth A. Bray ◽  
Meena S. Moses ◽  
Eunsook Chung ◽  
Ryozo Imai

Sign in / Sign up

Export Citation Format

Share Document