scholarly journals Transcriptional Regulation of Arabidopsis MIR168a and ARGONAUTE1 Homeostasis in Abscisic Acid and Abiotic Stress Responses

2012 ◽  
Vol 158 (3) ◽  
pp. 1279-1292 ◽  
Author(s):  
Wei Li ◽  
Xiao Cui ◽  
Zhaolu Meng ◽  
Xiahe Huang ◽  
Qi Xie ◽  
...  
2020 ◽  
Vol 39 (7) ◽  
pp. 909-920
Author(s):  
Pratibha Ravindran ◽  
Shi Yin Yong ◽  
Bijayalakshmi Mohanty ◽  
Prakash P. Kumar

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Carina Steliana Carianopol ◽  
Aaron Lorheed Chan ◽  
Shaowei Dong ◽  
Nicholas J. Provart ◽  
Shelley Lumba ◽  
...  

AbstractYeast Snf1 (Sucrose non-fermenting1), mammalian AMPK (5′ AMP-activated protein kinase) and plant SnRK1 (Snf1-Related Kinase1) are conserved heterotrimeric kinase complexes that re-establish energy homeostasis following stress. The hormone abscisic acid (ABA) plays a crucial role in plant stress response. Activation of SnRK1 or ABA signaling results in overlapping transcriptional changes, suggesting these stress pathways share common targets. To investigate how SnRK1 and ABA interact during stress response in Arabidopsis thaliana, we screened the SnRK1 complex by yeast two-hybrid against a library of proteins encoded by 258 ABA-regulated genes. Here, we identify 125 SnRK1- interacting proteins (SnIPs). Network analysis indicates that a subset of SnIPs form signaling modules in response to abiotic stress. Functional studies show the involvement of SnRK1 and select SnIPs in abiotic stress responses. This targeted study uncovers the largest set of SnRK1 interactors, which can be used to further characterize SnRK1 role in plant survival under stress.


2011 ◽  
Vol 65 (5) ◽  
pp. 820-828 ◽  
Author(s):  
Yongsheng Yan ◽  
Yuman Zhang ◽  
Kun Yang ◽  
Zongxiu Sun ◽  
Yaping Fu ◽  
...  

Plant Direct ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. e00087 ◽  
Author(s):  
Nik Kovinich ◽  
Yiqun Wang ◽  
Janet Adegboye ◽  
Alexandra A. Chanoca ◽  
Marisa S. Otegui ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6071 ◽  
Author(s):  
Liuxin Xiang ◽  
Chao Liu ◽  
Jingzhi Luo ◽  
Lin He ◽  
Yushan Deng ◽  
...  

The AP2/ERF superfamily of transcription factors is one of the largest transcription factor families in plants and plays an important role in plant development processes and stress responses. In this study, BjABR1, an AP2/ERF superfamily gene, from tuber mustard (Brassica juncea var. tumida Tsen et Lee), sharing high amino acid sequence similarity with the AtABR1 (Arabidopsis thaliana AP2-like abscisic acid repressor 1) gene, were performed functional research, and the ABR1 homologous genes in Brassica species were identified and performed phylogenetic analysis. The promoter sequence of BjABR1 contained many phytohormone- and stress-related cis-elements; ABA (abscisic acid) and abiotic stresses can induce BjABR1 expression in tuber mustard; overexpression of BjABR1 in Arabidopsis can alleviate plant sensitivity to ABA and salt and osmotic stresses, and the alleviation may be due to changes in stress/ABA-induced gene expression. These results indicated that BjABR1 functions in ABA and abiotic stress responses. By BLAST searches against the genome database of five Brassica species (three diploids, B. rapa, B. nigra, and B. oleracea, and two allotetraploid, B. juncea and B. napus) using the protein sequence of AtABR1, 3, 3, 3, 6, and 5 ABR1 homologous genes in B. nigra, B. rapa, B. oleracea, B. juncea, and B. napus were identified, respectively, and they shared high sequence similarity. By sequence analysis, annotation mistakes of the protein-coding regions of two ABR1 homologous genes, GSBRNA2T00134741001 and BjuB007684, were found and corrected. Then, the evolution analysis of these ABR1 homologous genes showed that the ancestor of the three diploid species had three ABR1 homologous genes and each diploid inherited all the three genes from their ancestor; then, allotetraploid B. juncea inherited all the six genes from B. rapa and B. nigra with no gene lost, while allotetraploid B. napus inherited all the three genes from B. oleracea and two genes from B. rapa with one gene lost, indicating that ABR1 homologous genes possessed greater hereditary conservation in Brassica species. The ABR1 homologous genes between B. rapa and B. oleracea shared much higher sequence similarity compared to that of B. nigra in diploid species, indicating that ABR1 homologous genes in B. nigra had experienced more rapid evolution, and B. rapa and B. oleracea may share closer relationship compared to B. nigra. Moreover, the spatial and temporal expression analysis of six ABR1 homologous genes of tuber mustard showed that they possessed different expression models. These results imply that ABR1 homologous genes are important to Brassica plants, and they may possess similar function in ABA and abiotic stress responses but play a role in different tissues and growing stages of plant. This study will provide the foundation to the functional research of ABR1 homologous genes in the Brassica species and help to reveal and understand the evolution mechanisms of Brassica species.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1059
Author(s):  
Jubina Benny ◽  
Annalisa Marchese ◽  
Antonio Giovino ◽  
Francesco Paolo Marra ◽  
Anna Perrone ◽  
...  

The present study aimed at identifying and mapping key genes expressed in root tissues involved in drought and salinity tolerance/resistance conserved among different fruit tree species. Twenty-six RNA-Seq samples were analyzed from six published studies in five plant species (Olea europaea, Vitis riparia Michx, Prunus mahaleb, Prunus persica, Phoenix dactylifera). This meta-analysis used a bioinformatic pipeline identifying 750 genes that were commonly modulated in three salinity studies and 683 genes that were commonly regulated among three drought studies, implying their conserved role in resistance/tolerance/response to these environmental stresses. A comparison was done on the genes that were in common among both salinity and drought resulted in 82 genes, of which 39 were commonly regulated with the same trend of expression (23 were upregulated and 16 were downregulated). Gene set enrichment and pathway analysis pointed out that pathways encoding regulation of defense response, drug transmembrane transport, and metal ion binding are general key molecular responses to these two abiotic stress responses. Furthermore, hormonal molecular crosstalk plays an essential role in the fine-tuning of plant responses to drought and salinity. Drought and salinity induced a different molecular “hormonal fingerprint”. Dehydration stress specifically enhanced multiple genes responsive to abscisic acid, gibberellin, brassinosteroids, and the ethylene-activated signaling pathway. Salt stress mostly repressed genes encoding for key enzymes in signaling proteins in auxin-, gibberellin-(gibberellin 2 oxidase 8), and abscisic acid-related pathways (aldehyde oxidase 4, abscisic acid-responsive element-binding protein 3). Abiotic stress-related genes were mapped into the chromosome to identify molecular markers usable for the improvement of these complex quantitative traits. This meta-analysis identified genes that serve as potential targets to develop cultivars with enhanced drought and salinity resistance and/or tolerance across different fruit tree crops in a biotechnological sustainable way.


2013 ◽  
Vol 199 (1) ◽  
pp. 135-150 ◽  
Author(s):  
Yiting Shi ◽  
Zheng Wang ◽  
Pei Meng ◽  
Siqi Tian ◽  
Xiaoyan Zhang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1886
Author(s):  
Hui Jin Kim ◽  
Subhin Seomun ◽  
Youngdae Yoon ◽  
Geupil Jang

The phytohormone jasmonic acid (JA), a cyclopentane fatty acid, mediates plant responses to abiotic stresses. Abiotic stresses rapidly and dynamically affect JA metabolism and JA responses by upregulating the expression of genes involved in JA biosynthesis and signaling, indicating that JA has a crucial role in plant abiotic stress responses. The crucial role of JA has been demonstrated in many previous studies showing that JA response regulates various plant defense systems, such as removal of reactive oxygen species and accumulation of osmoprotectants. Furthermore, increasing evidence shows that plant tolerance to abiotic stresses is linked to the JA response, suggesting that abiotic stress tolerance can be improved by modulating JA responses. In this review, we briefly describe the JA biosynthetic and signaling pathways and summarize recent studies showing an essential role of JA in plant responses and tolerance to a variety of abiotic stresses, such as drought, cold, salt, and heavy metal stress. Additionally, we discuss JA crosstalk with another key stress hormone, abscisic acid, in plant abiotic stress responses.


Sign in / Sign up

Export Citation Format

Share Document