scholarly journals Opposing control by transcription factors MYB61 and MYB3 Increases Freezing Tolerance by relieving C-repeat Binding Factor suppression

2016 ◽  
pp. pp.00051.2016 ◽  
Author(s):  
Zhenqian Zhang ◽  
Xiaona Hu ◽  
Yunqin Zhang ◽  
Zhenyan Miao ◽  
Can Xie ◽  
...  
2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Alberto Meseguer ◽  
Filip Årman ◽  
Oriol Fornes ◽  
Ruben Molina-Fernández ◽  
Jaume Bonet ◽  
...  

Abstract Cis2-His2 zinc finger (C2H2-ZF) proteins are the largest family of transcription factors in human and higher metazoans. To date, the DNA-binding preferences of many members of this family remain unknown. We have developed a computational method to predict their DNA-binding preferences. We have computed theoretical position weight matrices (PWMs) of proteins composed by C2H2-ZF domains, with the only requirement of an input structure. We have predicted more than two-third of a single zinc-finger domain binding site for about 70% variants of Zif268, a classical member of this family. We have successfully matched between 60 and 90% of the binding-site motif of examples of proteins composed by three C2H2-ZF domains in JASPAR, a standard database of PWMs. The tests are used as a proof of the capacity to scan a DNA fragment and find the potential binding sites of transcription-factors formed by C2H2-ZF domains. As an example, we have tested the approach to predict the DNA-binding preferences of the human chromatin binding factor CTCF. We offer a server to model the structure of a zinc-finger protein and predict its PWM.


1999 ◽  
Vol 19 (10) ◽  
pp. 6729-6741 ◽  
Author(s):  
Kristin Baetz ◽  
Brenda Andrews

ABSTRACTInSaccharomyces cerevisiae, two transcription factors, SBF (SCB binding factor) and MBF (MCB binding factor), promote the induction of gene expression at the G1/S-phase transition of the mitotic cell cycle. Swi4 and Mbp1 are the DNA binding components of SBF and MBF, respectively. The Swi6 protein is a common subunit of both transcription factors and is presumed to play a regulatory role. SBF binding to its target sequences, the SCBs, is a highly regulated event and requires the association of Swi4 with Swi6 through their C-terminal domains. Swi4 binding to SCBs is restricted to the late M and G1phases, when Swi6 is localized to the nucleus. We show that in contrast to Swi6, Swi4 remains nuclear throughout the cell cycle. This finding suggests that the DNA binding domain of Swi4 is inaccessible in the full-length protein when not complexed with Swi6. To explore this hypothesis, we expressed Swi4 and Swi6 in insect cells by using the baculovirus system. We determined that partially purified Swi4 cannot bind SCBs in the absence of Swi6. However, Swi4 derivatives carrying point mutations or alterations in the extreme C terminus were able to bind DNA or activate transcription in the absence of Swi6, and the C terminus of Swi4 inhibited Swi4 derivatives from binding DNA intrans. Full-length Swi4 was determined to be monomeric in solution, suggesting an intramolecular mechanism for auto-inhibition of binding to DNA by Swi4. We detected a direct in vitro interaction between a C-terminal fragment of Swi4 and the N-terminal 197 amino acids of Swi4, which contain the DNA binding domain. Together, our data suggest that intramolecular interactions involving the C-terminal region of Swi4 physically prevent the DNA binding domain from binding SCBs. The interaction of the carboxy-terminal region of Swi4 with Swi6 alleviates this inhibition, allowing Swi4 to bind DNA.


2005 ◽  
Vol 86 (5) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. Almqvist ◽  
J. Zou ◽  
Y. Linderson ◽  
C. Borestrom ◽  
E. Altiok ◽  
...  

The family of repeats (FR) is a major upstream enhancer of the Epstein–Barr virus (EBV) latent C promoter (Cp) that controls transcription of six different latent nuclear proteins following interaction with the EBV nuclear protein EBNA1. Here, it was shown that Cp could also be activated by octamer-binding factor (Oct) proteins. Physical binding to the FR by the cellular transcription factors Oct-1 and Oct-2 was demonstrated by using an electrophoretic mobility-shift assay. Furthermore, Oct-1 in combination with co-regulator Bob.1, or Oct-2 alone, could drive transcription of a heterologous thymidine kinase promoter linked to the FR in both B cells and epithelial cells. Cp controlled by the FR was also activated by binding of Oct-2 to the FR. This may have direct implications for B cell-specific regulation of Cp.


2010 ◽  
Vol 135 (1) ◽  
pp. 40-48 ◽  
Author(s):  
James J. Polashock ◽  
Rajeev Arora ◽  
Yanhui Peng ◽  
Dhananjay Naik ◽  
Lisa J. Rowland

Highbush blueberry (Vaccinium corymbosum) is susceptible to winter freezing injury and frost damage in the spring. As part of an ongoing project to understand the process of cold acclimation, we isolated a C-repeat binding factor (CBF) transcriptional activator gene-coding region from the highbush blueberry cultivar Bluecrop. Expression of the highbush blueberry CBF gene was compared in floral buds of the cold-tolerant northern highbush cultivar Bluecrop and the more cold-sensitive southern rabbiteye (V. virgatum) blueberry cultivar Tifblue. Relative gene expression was higher in ‘Bluecrop’ than in ‘Tifblue’. Expression in both cultivars was highest at the earliest time point in the fall (coincident with the first stage of cold acclimation), declined during the later fall and winter, and, in ‘Bluecrop’, increased again as buds deacclimated, when temperatures tend to fluctuate. To confirm the putative identity of the gene as a member of the CBF gene family, and to determine if expression in a heterologous system could enhance freezing tolerance, the blueberry gene coding sequence was overexpressed in transgenic Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. Transgenic plants expressing the putative blueberry CBF gene exhibited induced expression of the A. thaliana cold-regulated (COR) genes COR78 and COR6.6, under non-inducing conditions (i.e., 23 °C); however, expression of two other COR genes was unaffected. Transgenic plants also exhibited enhanced freezing tolerance under non-acclimated conditions, but not to the level of acclimated control plants. Thus, the expression pattern in floral buds and the ability of the isolated gene to turn on a subset of COR genes and increase freezing tolerance in a heterologous system suggest it is a functional member of the CBF gene family in blueberry.


2012 ◽  
Vol 6 (1) ◽  
pp. 43-54
Author(s):  
Viktor Martyanov ◽  
Robert H. Gross

The transcription factor complexes Mlu1-box binding factor (MBF) and Swi4/6 cell cycle box binding factor (SBF) regulate the cell cycle in Saccharomyces cerevisiae. They activate hundreds of genes and are responsible for nor-mal cell cycle progression from G1 to S phase. We investigated the conservation of MBF and SBF binding sites during fungal evolution. Orthologs of S. cerevisiae targets of these transcription factors were identified in 37 fungal species and their upstream regions were analyzed for putative transcription factor binding sites. Both groups displayed enrichment in specific putative regulatory DNA sequences in their upstream regions and showed different preferred upstream motif loca-tions, variable patterns of evolutionary conservation of the motifs and enrichment in unique biological functions for the regulated genes. The results indicate that despite high sequence similarity of upstream DNA motifs putatively associated with G1-S transcriptional regulation by MBF and SBF transcription factors, there are important upstream sequence feature differences that may help differentiate the two seemingly similar regulatory modes. The incorporation of upstream motif sequence comparison, positional distribution and evolutionary variability of the motif can complement functional infor-mation about roles of the respective gene products and help elucidate transcriptional regulatory pathways and functions.


Sign in / Sign up

Export Citation Format

Share Document