scholarly journals A C-Repeat Binding Factor Transcriptional Activator (CBF/DREB1) from European Bilberry (Vaccinium myrtillus) Induces Freezing Tolerance When Expressed in Arabidopsis thaliana

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54119 ◽  
Author(s):  
Rachael J. Oakenfull ◽  
Robert Baxter ◽  
Marc R. Knight
2010 ◽  
Vol 135 (1) ◽  
pp. 40-48 ◽  
Author(s):  
James J. Polashock ◽  
Rajeev Arora ◽  
Yanhui Peng ◽  
Dhananjay Naik ◽  
Lisa J. Rowland

Highbush blueberry (Vaccinium corymbosum) is susceptible to winter freezing injury and frost damage in the spring. As part of an ongoing project to understand the process of cold acclimation, we isolated a C-repeat binding factor (CBF) transcriptional activator gene-coding region from the highbush blueberry cultivar Bluecrop. Expression of the highbush blueberry CBF gene was compared in floral buds of the cold-tolerant northern highbush cultivar Bluecrop and the more cold-sensitive southern rabbiteye (V. virgatum) blueberry cultivar Tifblue. Relative gene expression was higher in ‘Bluecrop’ than in ‘Tifblue’. Expression in both cultivars was highest at the earliest time point in the fall (coincident with the first stage of cold acclimation), declined during the later fall and winter, and, in ‘Bluecrop’, increased again as buds deacclimated, when temperatures tend to fluctuate. To confirm the putative identity of the gene as a member of the CBF gene family, and to determine if expression in a heterologous system could enhance freezing tolerance, the blueberry gene coding sequence was overexpressed in transgenic Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. Transgenic plants expressing the putative blueberry CBF gene exhibited induced expression of the A. thaliana cold-regulated (COR) genes COR78 and COR6.6, under non-inducing conditions (i.e., 23 °C); however, expression of two other COR genes was unaffected. Transgenic plants also exhibited enhanced freezing tolerance under non-acclimated conditions, but not to the level of acclimated control plants. Thus, the expression pattern in floral buds and the ability of the isolated gene to turn on a subset of COR genes and increase freezing tolerance in a heterologous system suggest it is a functional member of the CBF gene family in blueberry.


2022 ◽  
Vol 23 (1) ◽  
pp. 511
Author(s):  
Yanjie Zhang ◽  
Yu Ma ◽  
Ruiqi Liu ◽  
Guanglin Li

K-homologous (KH) family is a type of nucleic acid-binding protein containing the KH domain and has been found to affect splicing and transcriptional regulation. However, KH family genes haven’t been investigated in plant species systematically. In this study, we identified 30 genes that belonged to the KH family based on HMM of the KH domain in Arabidopsis thaliana. Phylogenetic tree analysis showed that the KH family is grouped into three subgroups. Synteny analysis showed that AtKH9 and AtKH29 have the conserved synteny relationship between A. thaliana and the other five species. The AtKH9 and AtKH29 were located in the cytoplasm and nucleus. The seed germination rates of the mutants atkh9 and atkh29 were higher than wild-type after abscisic acid (ABA) and salicylic acid (SA) treatments. In addition, the expression of ABA-related genes, such as ABRE-binding factor 2 (ABF2), ABRE-binding factor 4 (ABF4), and delta 1-pyrroline-5-carboxylate synthase (P5CS), and an SA-related gene pathogenesis-related proteins b (PR1b) were downregulated after ABA and SA treatments, respectively. These results suggested that atkh9 and atkh29 mutants inhibit the effect of ABA and SA on seed germination. In conclusion, our results provide valuable information for further exploration of the function of KH family genes and propose directions and ideas for the identification and characterization of KH family genes in other plants.


2008 ◽  
Vol 8 (1) ◽  
pp. 105 ◽  
Author(s):  
Heather I Mckhann ◽  
Carine Gery ◽  
Aurelie Berard ◽  
Sylvie Leveque ◽  
Ellen Zuther ◽  
...  

2009 ◽  
Vol 419 (1) ◽  
pp. 221-230 ◽  
Author(s):  
Ctirad Hofr ◽  
Pavla Šultesová ◽  
Michal Zimmermann ◽  
Iva Mozgová ◽  
Petra Procházková Schrumpfová ◽  
...  

Proteins that bind telomeric DNA modulate the structure of chromosome ends and control telomere function and maintenance. It has been shown that AtTRB (Arabidopsis thaliana telomere-repeat-binding factor) proteins from the SMH (single-Myb-histone) family selectively bind double-stranded telomeric DNA and interact with the telomeric protein AtPOT1b (A. thaliana protection of telomeres 1b), which is involved in telomere capping. In the present study, we performed the first quantitative DNA-binding study of this plant-specific family of proteins. Interactions of full-length proteins AtTRB1 and AtTRB3 with telomeric DNA were analysed by electrophoretic mobility-shift assay, fluorescence anisotropy and surface plasmon resonance to reveal their binding stoichiometry and kinetics. Kinetic analyses at different salt conditions enabled us to estimate the electrostatic component of binding and explain different affinities of the two proteins to telomeric DNA. On the basis of available data, a putative model explaining the binding stoichiometry and the protein arrangement on telomeric DNA is presented.


Sign in / Sign up

Export Citation Format

Share Document