scholarly journals Electrical Membrane Properties of Leaves, Roots, and Single Root Cap Cells of Susceptible Avena sativa

1991 ◽  
Vol 95 (3) ◽  
pp. 675-681 ◽  
Author(s):  
Cornelia I. Ullrich ◽  
Anton J. Novacky
Author(s):  
Peter B. Tinker ◽  
Peter Nye

The uptake of nutrient and other ions into the root from the surrounding soil is the main topic of this book. To understand it, we need to know how the nutrient uptake and demand of the plant is expressed at the root surface. The main interest is on how the demand at the root surface can be quantitatively defined in terms of its uptake characteristics. For this reason, our explanation of the ion uptake mechanism of the root itself is brief, and is intended mainly for readers who have not studied the subject deeply. The subject has become considerably more complex since 1977, but this detailed knowledge has not yet coalesced into a full model of how ions are absorbed, such as ultimately will allow root uptake properties to be predicted. There have been many good reviews in the recent past, and the following may be consulted: Clarkson & Hanson 1980; Glass 1983; Luttge 1983; Clarkson 1985; Sanders 1990; Clarkson & Luttge 1991; Marschner 1995. We will describe the structure of a single root only briefly here, since this information can be found in standard texts (Troughton 1957; Esau 1965; Cutter 1978; Fahn 1982). Figures 5.1-5.5 show the general structure, but here we stress points that have a special bearing on the process of ion uptake or root behaviour in soil. Byrne (1974) noted that the anatomy of soil-grown roots may differ somewhat from that of solution-grown roots. The architecture of whole root systems in soil is dealt with in chapter 9.The root tip is a highly important part of the root. The apical meristem (the ‘quiescent centre’) is a fraction of a millimetre behind the visible root tip; cells that form behind the centre of this develop into the root, whereas those in front of the centre form the root cap. These cells gradually reach the surface of the cap, and there are rubbed off and lost into the soil at a rate of several thousand per day in maize. Often, these cells are visible in the mucigel that forms from the base of the root cap and covers the young root (section 8.1.3), and can remain alive in the gel for a period.


Author(s):  
B. K. Kirchoff ◽  
L.F. Allard ◽  
W.C. Bigelow

In attempting to use the SEM to investigate the transition from the vegetative to the floral state in oat (Avena sativa L.) it was discovered that the procedures of fixation and critical point drying (CPD), and fresh tissue examination of the specimens gave unsatisfactory results. In most cases, by using these techniques, cells of the tissue were collapsed or otherwise visibly distorted. Figure 1 shows the results of fixation with 4.5% formaldehyde-gluteraldehyde followed by CPD. Almost all cellular detail has been obscured by the resulting shrinkage distortions. The larger cracks seen on the left of the picture may be due to dissection damage, rather than CPD. The results of observation of fresh tissue are seen in Fig. 2. Although there is a substantial improvement over CPD, some cell collapse still occurs.Due to these difficulties, it was decided to experiment with cold stage techniques. The specimens to be observed were dissected out and attached to the sample stub using a carbon based conductive paint in acetone.


Author(s):  
Y. R. Chen ◽  
Y. F. Huang ◽  
W. S. Chen

Acid phosphatases are widely distributed in different tisssues of various plants. Studies on subcellular localization of acid phosphatases show they might be present in cell wall, plasma lemma, mitochondria, plastid, vacuole and nucleus. However, their localization in rice cell varies with developmental stages of cells and plant tissues. In present study, acid phosphatases occurring in root cap are examined.Sliced root tips of ten-day-old rice(Oryza sativa) seedlings were fixed in 0.1M cacodylate buffer containing 2.5% glutaraldehyde for 2h, washed overnight in same buffer solution, incubated in Gomori's solution at 37° C for 90min, post-fixed in OsO4, dehydrated in ethanol series and finally embeded in Spurr's resin. Sections were doubly stained with uranyl acetate and lead citrate, and observed under Hitachi H-600 at 75 KV.


1988 ◽  
Vol 85 ◽  
pp. 391-397
Author(s):  
Bo Tao Fan ◽  
Françoise Simonnet ◽  
Jean Schaeverbeke ◽  
Gérard Lapluye

Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
S Chon ◽  
R Earland ◽  
A Pappas ◽  
KA Reynertson ◽  
MD Southall

Author(s):  
Francisco Gavi Reyes ◽  
César Botello-Aguillón ◽  
Leonardo Tijerina-Chávez ◽  
Arturo Galvis-Spíndola ◽  
Rodrigo Roblero-Hidalgo

E Objetivo: Desarrollar un procedimiento para estimar biomasa con imágenes digitales captadas desde un dron y modelación 3D (ID-Dron-3D) aplicable en alfalfa (Medicago sativa L.) y avena forrajera (Avena sativa L.). Diseño/metodología/aproximación: Con una cámara digital acoplada al dron se obtuvieron imágenes antes de la cosecha de los cultivos, que fueron procesadas con software para luego estimar volumen de biomasa. En cada cultivo se midió altura de la planta y área cosechada, volumen aparente y real de biomasa, y peso de biomasa fresca y seca. Resultados: Con base en el análisis de regresión se obtuvieron modelos lineales a una p<0.05 para predecir: biomasa fresca en avena (R2=0.70) y alfalfa (R2 =0.47); y biomasa seca en avena (R2=0.78) y en alfalfa (R2=0.31) mediante ID-Dron-3D. Limitaciones del estudio/implicaciones: Considerando las R2 de los modelos obtenidos, los resultados en la avena forrajera fueron mejores, respecto a los detectados en alfalfa, lo cual se puede deber a la mayor variabilidad de la cobertura vegetal, ya que, en algunas unidades de muestreo, las plantas de alfalfa no cubrían completamente el suelo. Hallazgos/conclusiones: El rendimiento de biomasa fresca y seca de ambos cultivos se correlacionó significativamente con su respectivo volumen aparente estimado con imágenes digitales tomadas desde un dron y su procesamiento 3D (ID-Dron-3D).


2020 ◽  
Vol 9 (4) ◽  
pp. 40-43
Author(s):  
N. K. Yuldasheva ◽  
S. D. Gusakova ◽  
D. Kh. Nurullaeva ◽  
N. T. Farmanova ◽  
R. P. Zakirova ◽  
...  

Introduction. Lipids are a widespread group of biologically active substances in nature, making up the bulk of the organic substances of all living organisms. They accumulate in plants in seeds, as well as in fruits and perform a number of vital functions: they are the main components of cell membranes and the energy reserve for the body.Aim. Study of neutral lipids of sown oats (Avena sativa L.).Materials and methods. The objects of the study were fruits (grains) of oats of the sown variety "Tashkent 1," harvested in the Republic of Uzbekistan. Results and discussions. Neutral lipids of oat grains have been found to contain 13 fatty acids with a predominance of the sum of oleic, linolenic and linoleic acids. The total degree of unsaturation was almost 78%. Absorption bands characteristic of these substances were observed in the IR spectrum of MEGC.Conclusion. According to the results of the NL analysis, oat grains consisted of triacylglycerides and free LCDs, which were accompanied by hydrocarbons, phytosterols, triterpenoids and tocopherols.


Sign in / Sign up

Export Citation Format

Share Document