scholarly journals Two Discrete cis Elements Control the Abaxial Side–Specific Expression of the FILAMENTOUS FLOWER Gene in Arabidopsis

2003 ◽  
Vol 15 (11) ◽  
pp. 2592-2602 ◽  
Author(s):  
Keiro Watanabe ◽  
Kiyotaka Okada
Genome ◽  
2019 ◽  
Vol 62 (10) ◽  
pp. 643-656 ◽  
Author(s):  
Yong Zhou ◽  
Junjie Tao ◽  
Golam Jalal Ahammed ◽  
Jingwen Li ◽  
Youxin Yang

The plant aquaporins (AQPs) are highly conserved integral membrane proteins that participate in multiple developmental processes and responses to various stresses. In this study, a total of 35 AQP genes were identified in the watermelon genome. The phylogenetic analysis showed that these AQPs can be divided into five types, including 16 plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight nodulin 26-like intrinsic proteins (NIPs), two small basic intrinsic proteins (SIPs), and one uncategorized X intrinsic protein (XIP). A number of cis-elements related to plant responses to hormones and stresses were detected in the promoter sequences of ClAQP genes. Chromosome distribution analysis revealed that the genes are unevenly distributed on eight chromosomes, with chromosomes 1 and 4 possessing the most genes. Expression analysis at different developmental stages in flesh and rind indicated that most of ClAQPs have tissue-specific expression. Meanwhile, some other AQP genes showed differential expression in response to cold, salt, and ABA treatments, which is consistent with the organization of the stress-responsive cis-elements detected in the promoter regions. Our results lay a foundation for understanding the specific functions of ClAQP genes to help the genetic improvement of watermelon.


2006 ◽  
Vol 394 (3) ◽  
pp. 617-626 ◽  
Author(s):  
Bao-Liang Song ◽  
Can-Hua Wang ◽  
Xiao-Min Yao ◽  
Li Yang ◽  
Wen-Jing Zhang ◽  
...  

Humans express two ACAT (acyl-CoA:cholesterol acyltransferase) genes, ACAT1 and ACAT2. ACAT1 is ubiquitously expressed, whereas ACAT2 is primarily expressed in intestinal mucosa and plays an important role in intestinal cholesterol absorption. To investigate the molecular mechanism(s) responsible for the tissue-specific expression of ACAT2, we identified five cis-elements within the human ACAT2 promoter, four for the intestinal-specific transcription factor CDX2 (caudal type homeobox transcription factor 2), and one for the transcription factor HNF1α (hepatocyte nuclear factor 1α). Results of luciferase reporter and electrophoretic mobility shift assays show that CDX2 and HNF1α exert a synergistic effect, enhancing the ACAT2 promoter activity through binding to these cis-elements. In undifferentiated Caco-2 cells, the ACAT2 expression is increased when exogenous CDX2 and/or HNF1α are expressed by co-transfection. In differentiated Caco-2 cells, the ACAT2 expression significantly decreases when the endogenous CDX2 or HNF1α expression is suppressed by using RNAi (RNA interference) technology. The expression levels of CDX2, HNF1α, and ACAT2 are all greatly increased when the Caco-2 cells differentiate to become intestinal-like cells. These results provide a molecular mechanism for the tissue-specific expression of ACAT2 in intestine. In normal adult human liver, CDX2 expression is not detectable and the ACAT2 expression is very low. In the hepatoma cell line HepG2 the CDX2 expression is elevated, accounting for its elevated ACAT2 expression. A high percentage (seven of fourteen) of liver samples from patients affected with hepatocellular carcinoma exhibited elevated ACAT2 expression. Thus, the elevated ACAT2 expression may serve as a new biomarker for certain form(s) of hepatocellular carcinoma.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 334
Author(s):  
Xue Leng ◽  
Hanzeng Wang ◽  
Shuang Zhang ◽  
Chunpu Qu ◽  
Chuanping Yang ◽  
...  

Ascorbate peroxidase (APX) is a member of class I of the heme-containing peroxidase family. The enzyme plays important roles in scavenging reactive oxygen species for protection against oxidative damage and maintaining normal plant growth and development, as well as in biotic stress responses. In this study, we identified 11 APX genes in the Populus trichocarpa genome using bioinformatic methods. Phylogenetic analysis revealed that the PtrAPX proteins were classifiable into three clades and the members of each clade shared similar gene structures and motifs. The PtrAPX genes were distributed on six chromosomes and four segmental-duplicated gene pairs were identified. Promoter cis-elements analysis showed that the majority of PtrAPX genes contained a variety of phytohormone- and abiotic stress-related cis-elements. Tissue-specific expression profiles indicated that the PtrAPX genes primarily function in roots and leaves. Real-time quantitative PCR (RT-qPCR) analysis indicated that PtrAPX transcription was induced in response to drought, salinity, high ammonium concentration, and exogenous abscisic acid treatment. These results provide important information on the phylogenetic relationships and functions of the APX gene family in P. trichocarpa.


2003 ◽  
Vol 81 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Jeffrey D Pylatuik ◽  
Rebecca H Cross ◽  
Arthur R Davis ◽  
Peta C Bonham-Smith

To investigate the functional conservation of cis regulatory elements controlling AGAMOUS (AG) expression, we placed the promoter region of AG from Arabidopsis thaliana into a close relative, Brassica napus, and a distantly related species, Linum usitatissimum, and analyzed the subsequent expression patterns in each species. Spatially, the expression patterns in all three species were marginally similar, in that expression was confined primarily to the reproductive organs and nectarium. Within organs however, tissue-specific expression patterns were not conserved between species. Unlike Arabidopsis, the transgenic AG cis elements did not express in the ovules of B. napus and L. usitatissimum. Temporally, the pattern of AG cis-element expression in B. napus was identical to that of Arabidopsis during early development; however, the AG cis elements did not express at all during early flower development in L. usitatissimum. These results suggest that although regulatory factors controlling the generalized local expression of AG have been conserved between these species, those controlling temporal and tissue-specific expression have not.Key words: AGAMOUS, cis elements, regulation, Arabidopsis, Brassica napus, Linum usitatissimum.


Sign in / Sign up

Export Citation Format

Share Document