scholarly journals In Planta Stage-Specific Fungal Gene Profiling Elucidates the Molecular Strategies of Fusarium graminearum Growing inside Wheat Coleoptiles

2012 ◽  
Vol 24 (12) ◽  
pp. 5159-5176 ◽  
Author(s):  
Xiao-Wei Zhang ◽  
Lei-Jie Jia ◽  
Yan Zhang ◽  
Gang Jiang ◽  
Xuan Li ◽  
...  
2008 ◽  
Vol 21 (12) ◽  
pp. 1571-1581 ◽  
Author(s):  
Amber E. Stephens ◽  
Donald M. Gardiner ◽  
Rosemary G. White ◽  
Alan L. Munn ◽  
John M. Manners

Fusarium graminearum causes head blight (FHB) and crown rot (CR) diseases in wheat. Compared with FHB, CR symptom development occurs slowly, usually taking 4 to 8 weeks to become visible. To characterize CR development, we used histological and real-time quantitative polymerase chain reaction analyses to assess fungal colonization during a timecourse of infection. Three distinct phases of infection were identified: i) initial spore germination with formation of a superficial hyphal mat at the inoculation point, ii) colonization of the adaxial epidermis of the outer leaf sheath and mycelial growth from the inoculation point to the crown, concomitant with a drop in fungal biomass, and iii) extensive colonization of the internal crown tissue. Fungal gene expression was examined during each phase using Affymetrix GeneChips. In total, 1,839 F. graminearum genes were significantly upregulated, including some known FHB virulence genes (e.g., TRI5 and TRI14), and 2,649 genes were significantly downregulated in planta compared with axenically cultured mycelia. Global comparisons of fungal gene expression with published data for FHB showed significant similarities between early stages of FHB and CR. These results indicate that CR disease development involves distinct phases of colonization, each of which is associated with a different fungal gene expression program.


2006 ◽  
Vol 43 (5) ◽  
pp. 316-325 ◽  
Author(s):  
Ulrich Güldener ◽  
Kye-Yong Seong ◽  
Jayanand Boddu ◽  
Seungho Cho ◽  
Frances Trail ◽  
...  

2012 ◽  
Vol 25 (12) ◽  
pp. 1617-1627 ◽  
Author(s):  
Kyunghun Min ◽  
Hokyoung Son ◽  
Jungkwan Lee ◽  
Gyung Ja Choi ◽  
Jin-Cheol Kim ◽  
...  

Peroxisomes are organelles that are involved in a number of important cellular metabolic processes, including the β-oxidation of fatty acids, biosynthesis of secondary metabolites, and detoxification of reactive oxygen species (ROS). In this study, the role of peroxisomes was examined in Fusarium graminearum by targeted deletion of three genes (PEX5, PEX6, and PEX7) encoding peroxin (PEX) proteins required for peroxisomal protein import. PEX5 and PEX7 deletion mutants were unable to localize the fluorescently tagged peroxisomal targeting signal type 1 (PTS1)- and PTS2-containing proteins to peroxisomes, respectively, whereas the PEX6 mutant failed to localize both fluorescent proteins. Deletion of PEX5 and PEX6 resulted in retarded growth on long-chain fatty acids and butyrate, while the PEX7 deletion mutants utilized fatty acids other than butyrate. Virulence on wheat heads was greatly reduced in the PEX5 and PEX6 deletion mutants, and they were defective in spreading from inoculated florets to the adjacent spikelets through rachis. Deletion of PEX5 and PEX6 dropped survivability of aged cells in planta and in vitro due to the accumulation of ROS followed by necrotic cell death. These results demonstrate that PTS1-dependent peroxisomal protein import mediated by PEX5 and PEX6 are critical to virulence and survival of F. graminearum.


2011 ◽  
Vol 101 (8) ◽  
pp. 929-934 ◽  
Author(s):  
Nadia Ponts ◽  
Laetitia Pinson-Gadais ◽  
Anne-Laure Boutigny ◽  
Christian Barreau ◽  
Florence Richard-Forget

The impact of five phenolic acids (ferulic, coumaric, caffeic, syringic, and p-hydroxybenzoic acids) on fungal growth and type B trichothecene production by four strains of Fusarium graminearum was investigated. All five phenolic acids inhibited growth but the degree of inhibition varied between strains. Our results suggested that the more lipophilic phenolic acids are, the higher is the effect they have on growth. Toxin accumulation in phenolic acid-supplemented liquid glucose, yeast extract, and peptone cultures was enhanced in the presence of ferulic and coumaric acids but was reduced in the presence of p-hydroxybenzoic acid. This modulation was shown to correlate with a regulation of TRI5 transcription. In this study, addition of phenolic acids with greater antioxidant properties resulted in a higher toxin accumulation, indicating that the modulation of toxin accumulation may be linked to the antioxidant properties of the phenolic acids. These data suggest that, in planta, different compositions in phenolic acids of kernels from various cultivars may reflect different degrees of sensitivity to “mycotoxinogenesis.”


2019 ◽  
Author(s):  
Xiaorong Lin ◽  
Hongchen Li ◽  
Zonghua Wang ◽  
Stefan Olsson

Background. Choosing reference genes for RT-qPCR for the study of transcriptomic responses of target genes is often done using “standard” reference genes (housekeeping genes) selected before the genomic era. Now, published transcriptome data can be used to aid in this selection to avoid the selection of a reference gene that varies and obscure results. Methods. We use transcriptome data for the model pathogen fungus Fusarium graminearum to select housekeeping genes for In Vitro and In Planta conditions. Transcriptome data was downloaded from a publicly available database. We selected a database where transcriptome chip data from many experiments using the same chip has been deposited divided the downloaded data into In Vitro and In Planta conditions based on the information about the experiments. Results. We ranked the genes with the least variation (relative difference between maximum and minimum expression) across each dataset. Genes previously shown to perform well as reference genes for In Vitro conditions in a similar analysis as ours also performed well for In Vitro conditions in our dataset but worked less well for In Planta conditions. We found 5 reference genes that performed well under both In Planta conditions and In Vitro conditions. Discussion. Even if these 5 reference genes performed well, for other (new) target conditions we recommend making a transcriptome analysis to select well performing reference genes for RT-qPCR if possible. Alternatively, select 2 of the 5 genes that we show here performed well under both In Planta and In Vitro conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qianqian Zhang ◽  
Tao Zhong ◽  
Lizhu E ◽  
Mingliang Xu ◽  
Weixing Dai ◽  
...  

It is of critical importance for plants to correctly and efficiently allocate their resources between growth and defense to optimize fitness. Transcription factors (TFs) play crucial roles in the regulation of plant growth and defense response. Trihelix TFs display multifaceted functions in plant growth, development, and responses to various biotic and abiotic stresses. In our previous investigation of maize stalk rot disease resistance mechanism, we found a trihelix TF gene, ZmGT-3b, which is primed for its response to Fusarium graminearum challenge by implementing a rapid and significant reduction of its expression to suppress seedling growth and enhance disease resistance. The disease resistance to F. graminearum was consistently increased and drought tolerance was improved, while seedling growth was suppressed and photosynthesis activity was significantly reduced in the ZmGT-3b knockdown seedlings. Thus, the seedlings finally led to show a kind of growth–defense trade-off phenotype. Moreover, photosynthesis-related genes were specifically downregulated, especially ZmHY5, which encodes a conserved central regulator of seedling development and light responses; ZmGT-3b was confirmed to be a novel interacting partner of ZmHY5 in yeast and in planta. Constitutive defense responses were synchronically activated in the ZmGT-3b knockdown seedlings as many defense-related genes were significantly upregulated, and the contents of major cell wall components, such as lignin, were increased in the ZmGT-3b knockdown seedlings. These suggest that ZmGT-3b is involved in the coordination of the metabolism during growth–defense trade-off by optimizing the temporal and spatial expression of photosynthesis- and defense-related genes.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zachary Albert Noel ◽  
Ludmilla Roze ◽  
Mikaela Breunig ◽  
Frances Trail

The search for beneficial endophytes that can be part of a constructed microbial community has increased in recent years. We characterized three endophytic fungi previously isolated from wheat for their in vitro and in planta antagonism toward the Fusarium head blight pathogen, Fusarium graminearum. The endophytes were phylogenetically characterized and shown to be Alternaria destruens, Fusarium commune, and Fusarium oxysporum. Individual fungal endophytes significantly increased seed weight and lowered the accumulation of the mycotoxin deoxynivalenol compared to F. graminearum infected wheat heads without endophyte pretreatment. Investigation into the mechanism of competition in vitro showed that endophytes competitively excluded F. graminearum by pre-emptive colonization and possible inhibition over a distance. Investigations on the use of these endophytes in the field are in progress. Identification of these three endophytes highlights a common quandary in searching for beneficial microbes to use in agriculture: species definitions often do not separate individual isolates’ lifestyles. A greater understanding of the risks in using intraspecies variants for biocontrol is needed and should be examined in the context of the ecology of the individuals being investigated.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 493 ◽  
Author(s):  
Mohamed F. Abdallah ◽  
Marthe De Boevre ◽  
Sofie Landschoot ◽  
Sarah De Saeger ◽  
Geert Haesaert ◽  
...  

Fusarium graminearum can cause Giberella Ear Rot (GER) and seedling blight in maize, resulting in major yield losses. Besides GER, the infected grains are consequently contaminated with multiple mycotoxins of F. graminearum. Zearalenone and trichothecenes, such as deoxynivalenol and its acetylated forms, are among the major mycotoxins associated with F. graminearum infection in maize. In the current work, we explored the effect of the endophytic fungal genera of Epicoccum and Sordaria, to control F. graminearum infection in comparative trials with Piriformospora spp., an elusive endophytic genus. Furthermore, we investigated the effect of these endophytes on zearalenone, deoxynivalenol, and 15-acetyldeoxynivalenol levels using in vitro and in planta assays. As plants are endowed with several detoxification mechanisms comprising e.g., glucosylation of trichothecenes, the effect of the isolated fungal endophytes on the deoxynivalenol-3-glucoside level was also assessed. In general, results showed a considerable variability in the antifungal activity, both among species and among isolates within one species. Additionally, the effect on mycotoxin levels was variable, and not necessarily related to the antifungal activity except for zearalenone levels which were consistently reduced by the endophytes. These results highlight the great potential of certain endophytic fungal strains as new biocontrol agents in agricultural science.


2014 ◽  
Vol 104 (4) ◽  
pp. 357-364 ◽  
Author(s):  
I. Malbrán ◽  
C. A. Mourelos ◽  
J. R. Girotti ◽  
P. A. Balatti ◽  
G. A. Lori

At least 20 epidemics of Fusarium head blight (FHB) of wheat have been registered in the last 50 years in Argentina, with variable intensity. Damage induced by the disease is further aggravated by the presence of mycotoxins in affected grains that may cause health problems to humans and animals. The trichothecene chemotype was analyzed for 112 isolates of Fusarium graminearum from Argentina by polymerase chain reaction and two field trials were conducted to study the aggressiveness of a subsample of 14 representative isolates and to analyze deoxynivalenol (DON) production in planta and in vitro. All isolates belonged to the 15-acetyl-DON chemotype. Significant differences were observed in both the symptom severity induced in wheat spikes and the in vivo DON production, and a close correlation was found between these two variables. However, in vitro toxigenic potential was not correlated with the capacity of F. graminearum isolates to produce DON under natural conditions. The progress of infection in the rachis of inoculated wheat spikes was analyzed and the pathogen presence verified in both symptomatic and symptomless spikes. Even isolates with a limited capacity to induce symptoms were able to colonize the vascular tissue and to produce considerable amounts of DON in planta.


Sign in / Sign up

Export Citation Format

Share Document