scholarly journals Phases of Infection and Gene Expression of Fusarium graminearum During Crown Rot Disease of Wheat

2008 ◽  
Vol 21 (12) ◽  
pp. 1571-1581 ◽  
Author(s):  
Amber E. Stephens ◽  
Donald M. Gardiner ◽  
Rosemary G. White ◽  
Alan L. Munn ◽  
John M. Manners

Fusarium graminearum causes head blight (FHB) and crown rot (CR) diseases in wheat. Compared with FHB, CR symptom development occurs slowly, usually taking 4 to 8 weeks to become visible. To characterize CR development, we used histological and real-time quantitative polymerase chain reaction analyses to assess fungal colonization during a timecourse of infection. Three distinct phases of infection were identified: i) initial spore germination with formation of a superficial hyphal mat at the inoculation point, ii) colonization of the adaxial epidermis of the outer leaf sheath and mycelial growth from the inoculation point to the crown, concomitant with a drop in fungal biomass, and iii) extensive colonization of the internal crown tissue. Fungal gene expression was examined during each phase using Affymetrix GeneChips. In total, 1,839 F. graminearum genes were significantly upregulated, including some known FHB virulence genes (e.g., TRI5 and TRI14), and 2,649 genes were significantly downregulated in planta compared with axenically cultured mycelia. Global comparisons of fungal gene expression with published data for FHB showed significant similarities between early stages of FHB and CR. These results indicate that CR disease development involves distinct phases of colonization, each of which is associated with a different fungal gene expression program.

2006 ◽  
Vol 43 (5) ◽  
pp. 316-325 ◽  
Author(s):  
Ulrich Güldener ◽  
Kye-Yong Seong ◽  
Jayanand Boddu ◽  
Seungho Cho ◽  
Frances Trail ◽  
...  

2009 ◽  
Vol 22 (12) ◽  
pp. 1588-1600 ◽  
Author(s):  
Donald M. Gardiner ◽  
Kemal Kazan ◽  
John M. Manners

Fusarium head blight of wheat, caused by Fusarium graminearum, is a serious disease resulting in both reduced yields and contamination of grain with trichothecene toxins, with severe consequences for mammalian health. Recently, we have identified several related amine compounds such as agmatine and putrescine that promote the production of high levels of trichothecene toxins, such as deoxynivalenol (DON), in culture by F. graminearum and F. sporotrichioides. Here, a global analysis of fungal gene expression using the Affymetrix Fusarium GeneChip during culture under DON-inducing conditions compared with noninducing conditions is reported. Agmatine differentially regulated a large number of fungal genes, including both known and previously uncharacterized putative secondary metabolite biosynthetic gene clusters. In silico prediction of binding sites for the transcriptional regulator (TRI6) controlling TRI gene expression and gene expression analysis in a TRI6 mutant of F. graminearum showed that three of the differentially regulated genes were under the control of TRI6. Gene knock-out mutations of two of these genes resulted in mutants with massively increased production of DON and increased aggressiveness toward wheat. Our results not only identify a novel mechanism of negative regulation of DON production and virulence in F. graminearum but also point out the potential of this pathogen to evolve with an ability to produce massively increased amounts of toxins and increased virulence.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maria Buerstmayr ◽  
Christian Wagner ◽  
Tetyana Nosenko ◽  
Jimmy Omony ◽  
Barbara Steiner ◽  
...  

Abstract Background Fusarium head blight (FHB) is a devastating disease of wheat worldwide. Resistance to FHB is quantitatively controlled by the combined effects of many small to medium effect QTL. Flowering traits, especially the extent of extruded anthers, are strongly associated with FHB resistance. Results To characterize the genetic basis of FHB resistance, we generated and analyzed phenotypic and gene expression data on the response to Fusarium graminearum (Fg) infection in 96 European winter wheat genotypes, including several lines containing introgressions from the highly resistant Asian cultivar Sumai3. The 96 lines represented a broad range in FHB resistance and were assigned to sub-groups based on their phenotypic FHB severity score. Comparative analyses were conducted to connect sub-group-specific expression profiles in response to Fg infection with FHB resistance level. Collectively, over 12,300 wheat genes were Fusarium responsive. The core set of genes induced in response to Fg was common across different resistance groups, indicating that the activation of basal defense response mechanisms was largely independent of the resistance level of the wheat line. Fg-induced genes tended to have higher expression levels in more susceptible genotypes. Compared to the more susceptible non-Sumai3 lines, the Sumai3-derivatives demonstrated higher constitutive expression of genes associated with cell wall and plant-type secondary cell wall biogenesis and higher constitutive and Fg-induced expression of genes involved in terpene metabolism. Gene expression analysis of the FHB QTL Qfhs.ifa-5A identified a constitutively expressed gene encoding a stress response NST1-like protein (TraesCS5A01G211300LC) as a candidate gene for FHB resistance. NST1 genes are key regulators of secondary cell wall biosynthesis in anther endothecium cells. Whether the stress response NST1-like gene affects anther extrusion, thereby affecting FHB resistance, needs further investigation. Conclusion Induced and preexisting cell wall components and terpene metabolites contribute to resistance and limit fungal colonization early on. In contrast, excessive gene expression directs plant defense response towards programmed cell death which favors necrotrophic growth of the Fg pathogen and could thus lead to increased fungal colonization.


2009 ◽  
Vol 89 (4) ◽  
pp. 811-821 ◽  
Author(s):  
M R Fernandez ◽  
T K Turkington ◽  
W E May

Fusarium head blight (FHB) is well established in the eastern prairies, but for the most part it has been absent from western regions, especially under dryland conditions. This has been largely attributed to dry and hot conditions during some years, and the limited occurrence of F. graminearum in the western prairies. It is of importance to prevent the movement of F. graminearum, the most important FHB pathogen in North America, to areas where this pathogen is not commonly found. Three controlled-environment studies, using different Fusarium-infected common and durum wheat seed lots, were conducted to determine the effectiveness of currently registered fungicide seed treatments in improving seedling emergence and plant development, and preventing the growth of F. graminearum from infected seed to plant tissue. Fungicide treatments improved seedling emergence from the most infected seed over the untreated infected control, but most treatments did not improve emergence in the other experiments. Plant growth in the fungicide treatments was either similar to or slower than in the untreated controls. Fusarium graminearum was isolated from discoloured tissue in all treatments and was generally more common in crowns than in subcrown internodes. No fungicide treatment reduced discolouration of plant tissue or percentage isolation of F. graminearum or other Fusarium spp. consistently. We conclude that while currently registered seed treatments might be effective in improving seedling emergence in some infected wheat seed lots, they do not prevent the growth of F. graminearum from seeds to plant tissue. For the western prairies, the use of fungicide seed treatments as a strategy in the prevention of spread of FHB would require that they be effective primarily against F. graminearum. Performance of fungicide seed treatments against Fusarium-infected wheat seed should also be determined under typical growing conditions across the western prairies.Key words: Seed treatments, fungicides, wheat, root rot, crown rot, Fusarium graminearum, Fusarium avenaceum


2012 ◽  
Vol 24 (12) ◽  
pp. 5159-5176 ◽  
Author(s):  
Xiao-Wei Zhang ◽  
Lei-Jie Jia ◽  
Yan Zhang ◽  
Gang Jiang ◽  
Xuan Li ◽  
...  

2014 ◽  
Vol 104 (11) ◽  
pp. 1201-1207 ◽  
Author(s):  
Luca Sella ◽  
Katia Gazzetti ◽  
Carla Castiglioni ◽  
Wilhelm Schäfer ◽  
Francesco Favaron

Fusarium graminearum is a toxigenic fungal pathogen that causes Fusarium head blight (FHB) and crown rot on cereal crops worldwide. This fungus also causes damping-off and crown and root rots at the early stage of crop development in soybean cultivated in North and South America. Several F. graminearum genes were investigated for their contribution to FHB in cereals but no inherent study is reported for the dicotyledonous soybean host. In this study we determined the disease severity on soybean seedlings of five single gene disrupted mutants of F. graminearum, previously characterized in wheat spike infection. Three of these mutants are impaired on a specific function as the production of deoxynivalenol (DON, Δtri5), lipase (ΔFgl1), and xylanase (Δxyl03624), while the remaining two are MAP kinase mutants (ΔFgOS-2, Δgpmk1), which are altered in signaling pathways. The mutants that were reduced in virulence (Δtri5, ΔFgl1, and ΔFgOS-2) or are avirulent (Δgpmk1) on wheat were correspondently less virulent or avirulent in soybean seedlings, as shown by the extension of lesions and seedling lengths. The Δxyl03624 mutant was as virulent as the wild type mirroring the behavior observed in wheat. However, a different ranking of symptom severity occurred in the two hosts: the ΔFgOS-2 mutant, that infects wheat spikelets similarly to Δtri5 and ΔFgl1 mutants, provided much reduced symptoms in soybean. Differently from the other mutants, we observed that the ΔFgOS-2 mutant was several fold more sensitive to the glyceollin phytoalexin suggesting that its reduced virulence may be due to its hypersensitivity to this phytoalexin. In conclusion, lipase and DON seem important for full disease symptom development in soybean seedlings, OS-2 and Gpmk1 MAP kinases are essential for virulence, and OS-2 is involved in conferring resistance to the soybean phytoalexin.


2005 ◽  
Vol 23 (29) ◽  
pp. 7296-7306 ◽  
Author(s):  
Luca Agnelli ◽  
Silvio Bicciato ◽  
Michela Mattioli ◽  
Sonia Fabris ◽  
Daniela Intini ◽  
...  

Purpose The deregulation of CCND1, CCND2 and CCND3 genes represents a common event in multiple myeloma (MM). A recently proposed classification grouped MM patients into five classes on the basis of their cyclin D expression profiles and the presence of the main translocations involving the immunoglobulin heavy chain locus (IGH) at 14q32. In this study, we provide a molecular characterization of the identified translocations/cyclins (TC) groups. Materials and Methods The gene expression profiles of purified plasma cells from 50 MM cases were used to stratify the samples into the five TC classes and identify their transcriptional fingerprints. The cyclin D expression data were validated by means of real-time quantitative polymerase chain reaction analysis; fluorescence in situ hybridization was used to investigate the cyclin D loci arrangements, and to detect the main IGH translocations and the chromosome 13q deletion. Results Class-prediction analysis identified 112 probe sets as characterizing the TC1, TC2, TC4 and TC5 groups, whereas the TC3 samples showed heterogeneous phenotypes and no marker genes. The TC2 group, which showed extra copies of the CCND1 locus and no IGH translocations or the chromosome 13q deletion, was characterized by the overexpression of genes involved in protein biosynthesis at the translational level. A meta-analysis of published data sets validated the identified gene expression signatures. Conclusion Our data contribute to the understanding of the molecular and biologic features of distinct MM subtypes. The identification of a distinctive gene expression pattern in TC2 patients may improve risk stratification and indicate novel therapeutic targets.


1987 ◽  
Vol 7 (10) ◽  
pp. 3688-3693 ◽  
Author(s):  
W A Powell ◽  
N K Van Alfen

The double-stranded RNA responsible for transmissible hypovirulence in Cryphonectria (Endothia) parasitica was found to affect the accumulation of specific poly(A)+ RNA. Using differential hybridization techniques, two genes were isolated, Vir1 and Vir2, which were specifically expressed as poly(A)+ RNAs in the virulent cells. The highly expressed RNA sequences from these genes were not found in total RNA isolated from either American or European hypovirulent strains, although the genes were present in their genomes. Other virulence- and hypovirulence-specific RNA sequences were also detected. One isolated hypovirulence-specific RNA sequence was expressed in both virulent and hypovirulent cells, but in a two- to fourfold-higher concentration in the hypovirulent cells. The results show that hypovirulence is associated with concurrent changes in a few highly expressed poly(A)+ RNAs, which suggests a specific effect of the double-stranded RNA on fungal gene expression.


2016 ◽  
Vol 123 (4) ◽  
pp. 177-186 ◽  
Author(s):  
Emre Yörük ◽  
Berna Tunali ◽  
Bayram Kansu ◽  
Fatih Ölmez ◽  
Gülşen Uz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document