A pixel detector with large dynamic range for high photon counting rates

2002 ◽  
Vol 35 (4) ◽  
pp. 471-476 ◽  
Author(s):  
J.-F. Bérar ◽  
L. Blanquart ◽  
N. Boudet ◽  
P. Breugnon ◽  
B. Caillot ◽  
...  

In this paper, results obtained from a prototype photon counting detector are presented. The pixel size is 330 µm × 330 µm for a total area of 16 µm × 40 mm. The detector works at room temperature and its dynamic response ranges from 0.01 up to 106photons pixel−1s−1. An energy resolution of about 1.5 keV has been measured. Very encouraging small-angle X-ray scattering (SAXS) and diffraction patterns were obtained, demonstrating the success of the prototype. Plans for future developments based on this study are presented.

2016 ◽  
Vol 62 (3) ◽  
pp. 395-400
Author(s):  
Paweł Grochulski ◽  
Mirosław Cygler ◽  
Brian Yates

After a successful 10 years of operation, the Canadian Macromolecular Crystallography Facility 08ID-1 beamline will undergo an upgrade to establish micro-beam capability. This paper is mostly focussed on optics and computer simulations for ray tracing of the beamline. After completion, the focussed beam at the sample will have a much smaller size of 50 × 5 μm2 (H x V), allowing measurement of X-ray diffraction patterns from much smaller crystals than possible presently. The beamline will be equipped with a fast sample changer and an ultra-low noise photon counting detector, allowing shutter-less operation of the beamline. Additionally, it will be possible to perform in-situ room-temperature experiments.


2009 ◽  
Vol 16 (2) ◽  
pp. 231-236 ◽  
Author(s):  
Kaori Hattori ◽  
Ken'ichi Tsuchiya ◽  
Kazuki Ito ◽  
Yoko Okada ◽  
Kotaro Fujii ◽  
...  

The application of a two-dimensional photon-counting detector based on a micro-pixel gas chamber (µ-PIC) to high-resolution small-angle X-ray scattering (SAXS), and its performance, are reported. The µ-PIC is a micro-pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the µ-PIC in SAXS experiments at SPring-8. A dynamic range of >105 was obtained for X-ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high-angle region in one accumulation of photons.


2014 ◽  
Vol 70 (a1) ◽  
pp. C882-C882
Author(s):  
Tilman Donath ◽  
Benjamin Lüthi ◽  
Clemens Schulze-Briese

The PILATUS was the first Hybrid Pixel Detector available for SAXS. It has transformed data collection by its photon-counting technology, which enables noise-free X-ray detection with high dynamic range and excellent stability at high frame rates. These properties are essential for superior data quality in all scattering experiments, especially for optimal background correction when studying low-concentration samples. Besides optimal data quality at each sampling point, highest resolution is desired in most SAXS experiments both in q-range and in time. The newly developed EIGER pixel detector more than doubles the q-resolution that can be achieved when compared with PILATUS3 for the same sample-to-detector distance. EIGER features a pixel size of only 75 µm (in comparison: PILATUS3 has 172 µm). To characterize the spatial resolution of these detectors, point-spread functions were measured at the PTB laboratory at BESSY II, which show that the resolution is directly proportional to the pixel size with minimal cross talk between neighboring pixels. The EIGER 1M detector allows data acquisition at up to 3'000 frames per second. This enables unprecedented temporal resolution in time-resolved SAXS measurements and increases the speed of novel imaging techniques such as scanning SAXS/WAXS and coherent diffractive imaging applications, allowing images to be recorded faster or with higher spatial resolution. The design of the EIGER detector makes it vacuum compatible. Operation at low X-ray energies and correspondingly large scattering angles is another way of increasing q-resolution and also gives access to the lowest q data near the beam stop. In-vacuum detectors enable measurements with ultra-soft x-rays and thus high q-resolution. Moreover they optimize the data quality in scattering experiments by removing absorption and scatter caused from air and windows. An in-vacuum PILATUS 1M detector has been installed at the BESSY-2 FCM beamline and is applied for SAXS/GI-SAXS measurements at energies from 1.75 to 10 keV. For simultaneous SAXS/WAXS applications covering an even wider q-range, in-vacuum detectors with L-shaped detection surface are under development. These will detect the WAXS signal, while a clearance in the detector permits the direct beam to pass on to a SAXS detector placed at larger distance. These latest detector developments will be presented along with corresponding experimental results.


2014 ◽  
Vol 70 (a1) ◽  
pp. C694-C694
Author(s):  
Stephan Stern ◽  
Leonard Chavas ◽  
Henry Chapman ◽  
Adrian Mancuso ◽  
Andrew Aquila ◽  
...  

The European X-ray Free-Electron Laser (XFEL.EU) [1] will provide ultra-short, highly-intense, coherent x-ray pulses at an unprecedented repetition rate, transforming experiments in many scientific areas, including serial femtosecond crystallography (SFX). For the purpose of SFX experiments at the XFEL.EU, a dedicated endstation is being developed to be installed within the Single Particles, Clusters and Biomolecules (SPB) instrument [2]. The setup will refocus the beam spent by SPB into a second interaction region, thereby enabling two parallel experiments. In order to overcome various challenges in XFEL crystallography, and to optimize the output for SFX experiments at XFEL.EU, the Adaptive Gain Integrating Pixel Detector (AGIPD) [3] is currently under development and is to be implemented in the SPB instrument, including a 4 Megapixel version for the SFX apparatus. The AGIPD is a hybrid-pixel detector with pixels of 200 x 200 micron^2 each. The gain of each single pixel dynamically and independently adapts to the incoming signal. Thus, diffraction patterns of high dynamic range can be recorded, with the measured signal within a single data frame ranging from single photons and up to 1e+4 photons at 12 keV. Moreover, the AGIPD is designed to store over 350 data frames from successive pulses prior to digitization and read-out, thereby enabling operation at the European XFEL with its challenging repetition rate with 10 Hz pulse trains and a 4.5 MHz intra-train repetition rate. Furthermore, the incorporation of a veto system in AGIPD will allow one to potentially store only the frames that contain diffraction data from actual crystal hits, which ultimately increases the efficiency of the detector and DAQ systems dramatically. In the present work, we will review the design of the 4Mpix AGIPD for the SFX apparatus and discuss simulations and tests of its expected performance under the conditions foreseen for SFX experiments at the XFEL.EU.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


1974 ◽  
Vol 29 (12) ◽  
pp. 1771-1777 ◽  
Author(s):  
N. C. Haider ◽  
S. H. Hunter

Powder Cd of 99.999% purity was prepared at room temperature (25 °C) and x-ray diffraction patterns were obtained using CuKaα radiation with Ni-filter. The line broadening was analyzed after incorporating the appropriate correction factors. At room temperature Cd was found to have large particle size (653 A), small root mean square strain (.001), small deformation fault probability a (.003). and negligible growth fault probability β(0). Compared to other hep metals which have been studied earlier and which have higher melting temperatures, metal Cd is much less affected by mechanical deformation at room temperature.


1982 ◽  
Vol 20 ◽  
Author(s):  
R. Moret ◽  
R. Comes ◽  
G. Furdin ◽  
H. Fuzellier ◽  
F. Rousseaux

ABSTRACTIn α-C5n-HNO3 the condensation of the room-temperature liquid-like diffuse ring associated with the disorder-order transition around 250 K is studied and the low-temperature. superstructure is examined.It is found that β-C8n-HNO3 exhibits an in-plane incommensurate order at room temperature.Two types of graphite-Br2 are found. Low-temperature phase transitions in C8Br are observed at T1 ≍ 277 K and T2 ≍ 297 K. The room-temperature structure of C14Br is reexamined. Special attention is given to diffuse scattering and incommensurability.


1964 ◽  
Vol 42 (10) ◽  
pp. 1886-1889 ◽  
Author(s):  
B. Swaroop ◽  
S. N. Flengas

The crystal structure of zirconium trichloride was determined from X-ray diffraction patterns. Zirconium trichloride belongs to the [Formula: see text]space group. The dimensions of the main cell at room temperature are: a = 5.961 ± 0.005 Å and c = 9.669 ± 0.005 Å.The density of zirconium trichloride was measured and gave the value of 2.281 ± 0.075 g/cm3 while, from the X-ray calculations, the value was found to be 2.205 g/cm3.


2017 ◽  
Vol 50 (3) ◽  
pp. 951-958 ◽  
Author(s):  
Sen Chen ◽  
Juncheng E ◽  
Sheng-Nian Luo

SLADS(http://www.pims.ac.cn/Resources.html), a parallel code for direct simulations of X-ray scattering of large anisotropic dense nanoparticle systems of arbitrary species and atomic configurations, is presented. Particles can be of arbitrary shapes and dispersities, and interactions between particles are considered. Parallelization is achieved in real space for the sake of memory limitation. The system sizes attempted are up to one billion atoms, and particle concentrations in dense systems up to 0.36. Anisotropy is explored in terms of superlattices. One- and two-dimensional small-angle scattering or diffraction patterns are obtained.SLADSis validated self-consistently or against cases with analytical solutions.


Sign in / Sign up

Export Citation Format

Share Document