In situdetermination of stresses from time-of-flight neutron transmission spectra

2003 ◽  
Vol 36 (5) ◽  
pp. 1159-1168 ◽  
Author(s):  
Axel Steuwer ◽  
Javier Roberto Santisteban ◽  
Philip J. Withers ◽  
Lyndon Edwards ◽  
Mike E. Fitzpatrick

The pulsed neutron transmission diffraction technique exploits the sharp steps in intensity (Bragg edges) appearing in the transmitted spectra of thermal neutrons through polycrystalline materials. In this paper the positions of these edges acquired by the time-of-flight (TOF) technique are used to measure accurately the interplanar lattice distances to a resolution of Δd/d≃ 10−4of specimens subjected toin situuniaxial tensile loading. The sensitivity of the method is assessed for elastically isotropic (b.c.c. ferritic) and anisotropic (f.c.c. austenitic) polycrystalline specimens of negligible and moderately textured steels. For the more anisotropic austenitic steel, the elastic anisotropy is studied with regard to a Pawley refinement, and compared with previous results from conventional neutron diffraction experiments on the same material. It is shown that the method can be used to determine anisotropic strains, diffraction elastic constants, the residual and applied stress state as well as the unstrained lattice parameter by recording transmission spectra at different specimen inclinations, by complete analogy with the sin2ψ technique frequently used in X-ray diffraction. The technique is shown to deliver reliable measures of strain even in the case of moderate texture and elastic anisotropy.

2002 ◽  
Vol 35 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Javier Roberto Santisteban ◽  
A. Steuwer ◽  
L. Edwards ◽  
P. J. Withers ◽  
M. E. Fitzpatrick

Stress measurement by neutron diffraction depends critically on knowledge of the unstressed lattice parameter (a0) of the specimen under study. As a result, measurement of stress profiles in components wherea0is not homogeneous throughout the sample, such as welds or carburized surfaces, can be particularly difficult. An efficient solution to this problem is proposed based on the pulsed neutron transmission diffraction technique. This technique exploits the sharp steps in intensity, the so-called Bragg edges, appearing in the transmitted neutron spectra of polycrystalline materials, such steps being produced by coherent scattering from lattice planes. The position of these Bragg edges as defined by the time-of-flight technique is used to determine precisely local interplanar distances. In this work it is shown that the unstressed lattice parameter of thin specimens subjected to plane stress fields can be defined by recording transmission spectra at different sample inclinations, in complete analogy with the sin2ψ technique used in X-ray diffraction. Moreover, by using an array of detectors it is possible to produce a radiographic `image' ofa0for plane specimens or thin sections out of three-dimensional ones. The capability of the technique is exemplified by mapping the changes ina0for a ferritic weld that was used as a round robin sample in an international program for standardization of stress measurements by neutron diffraction.


2001 ◽  
Vol 34 (3) ◽  
pp. 289-297 ◽  
Author(s):  
J. R. Santisteban ◽  
L. Edwards ◽  
A. Steuwer ◽  
P. J. Withers

The positions of Bragg edges in neutron transmission experiments can be defined with high accuracy using the time-of-flight (TOF) technique on pulsed neutron sources. A new dedicated transmission instrument has been developed at ISIS, the UK spallation source, which provides a precision of Δd/d≃ 10−5in the determination of interplanar distances. This is achieved by fitting a theoretical three-parameter expression to the normalized Bragg edges appearing in the TOF transmission spectra. The technique is demonstrated by experiments performed on iron, niobium and nickel powders. The applicability of using the instrument for the determination of lattice strains in materials has been investigated using a simplein situloading experiment. Details of the calibration process are presented and the dependence of the resolution and the experimental times required by the transmission geometry on the instrumental variables are studied. Finally, the requirements for a Rietveld-type refinement of transmission data and the advantages and limitations over traditional neutron diffraction peak analysis are discussed.


Author(s):  
Rebecca D. McAuliffe ◽  
Daniel P. Shoemaker

Non-stoichiometry is considered to be one of the main problems limiting iron pyrite, FeS2, as a photovoltaic absorber material. Although some historical diffraction experiments have implied a large solubility range of FeS2−δ with δ up to 0.25, the current consensus based on calculated formation energies of intrinsic defects has lent support to line-compound behavior. Here it is shown that pyrite stoichiometry is relatively inflexible in both reductive conditions and in autogenous sulfur partial pressure, which produces samples with precise stoichiometry of FeS2 even at different Fe/S ratios. By properly standardizing in situ gas-flow X-ray diffraction measurements, no significant changes in the lattice parameter of FeS2 can be resolved, which portrays iron pyrite as prone to forming sulfur-deficient compounds, but not intrinsic defects in the manner of NiS2−δ.


2017 ◽  
Vol 50 (6) ◽  
pp. 1782-1790 ◽  
Author(s):  
Romain Vauchy ◽  
Alexis Joly ◽  
Christophe Valot

Plutonium–americium mixed oxides, Pu1−yAmyO2−x, with various Am contents (y= 0.018, 0.077, 0.21, 0.49, 0.80 and 1.00) were studiedin situby high-temperature X-ray diffraction. In this study, the lattice thermal expansion of the six compounds subjected to heat treatments up to 1773 K under reconstituted air (N2+ 21% O2+ ∼5 vpm H2O) was investigated. The materials remained monophasic throughout the experiments and, depending upon the americium content, the lattice parameter of the face-centred cubic phase deviated from linear lattice expansion at elevated temperatures as a result of the progressive reduction of Am4+to Am3+.


2014 ◽  
Vol 777 ◽  
pp. 118-123 ◽  
Author(s):  
Yujiro Hayashi ◽  
Yoshiharu Hirose ◽  
Daigo Setoyama

In situ three-dimensional crystallographic orientation mapping in plastically-deformed polycrystalline iron is demonstrated using a modified three-dimensional x-ray diffraction method. This voxel-by-voxel measurement method enables the observation of intragranular orientation distribution. The experiment is performed using coarse-grained ferrite with a mean grain size of ~ 60 μm and an incident x-ray beam with a beam size of 20 μm × 20 μm. Grains averagely rotate approximately toward the <110> preferred orientation of body-centered cubic uniaxial tensile texture. Intragranular orientation distributions are spread as the tensile strain increases to 10.7 %. Furthermore, intragranular multidirectional rotations are observed in grains near the <100> and <111> corners in the inverse pole figure.


2015 ◽  
Vol 22 (3) ◽  
pp. 736-744 ◽  
Author(s):  
Jocenir Boita ◽  
Marcus Vinicius Castegnaro ◽  
Maria do Carmo Martins Alves ◽  
Jonder Morais

In situtime-resolved X-ray absorption spectroscopy (XAS) measurements collected at the PtL3-edge during the synthesis of Pt nanoparticles (NPs) in aqueous solution are reported. A specially designed dispenser–reactor apparatus allowed for monitoring changes in the XAS spectra from the earliest moments of Pt ions in solution until the formation of metallic nanoparticles with a mean diameter of 4.9 ± 1.1 nm. By monitoring the changes in the local chemical environment of the Pt atoms in real time, it was possible to observe that the NPs formation kinetics involved two stages: a reduction-nucleation burst followed by a slow growth and stabilization of NPs. Subsequently, the synthesized Pt NPs were supported on activated carbon and characterized by synchrotron-radiation-excited X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). The supported Pt NPs remained in the metallic chemical state and with a reduced size, presenting slight lattice parameter contraction in comparison with the bulk Pt values.


2015 ◽  
Vol 230 ◽  
pp. 39-44 ◽  
Author(s):  
Natalja Ohon ◽  
Leonid Vasylechko ◽  
Yurii Prots ◽  
Marcus Schmidt ◽  
I.I. Syvorotka

Phase and structural behaviour in the SmAlO3–TbAlO3system has been studied in a whole concentration range by means of laboratory X-ray diffraction,in situhigh temperature synchrotron powder diffraction and differential thermal analysis. Formation of the continuous solid solution Sm1−xTbxAlO3with the orthorhombic perovskite structure (space groupPbnm) has been established. Peculiarity of the investigated system is lattice parameter crossovers resulted in the existence of three regions with different relations of the lattice parameters. Based on the results obtained, as well as an available literature data for the “pure” SmAlO3and TbAlO3, a phase diagram of the pseudo-binary SmAlO3–TbAlO3system has been constructed.


1990 ◽  
Vol 195 ◽  
Author(s):  
Akihisa Yanase ◽  
Hiroshi Komiyama ◽  
Kazunobu Tanaka

ABSTRACTIn situ measurements of optical absorption and x-ray diffraction for small supported silver particles were performed under defined atmospheres at temperatures below 723 K. We found, for the first time, reversible changes both in optical absorption spectrum and lattice parameter of silver particles against the cyclic exchange of ambient gases between 5% H2/He and 1% 02/He. The present data indicate that the adsorption of oxygen results in a reduction in surface stress of silver particles, leading to a change in the shape of particles.


1992 ◽  
Vol 276 ◽  
Author(s):  
J. Y. Hwang ◽  
C. F. Yang

ABSTRACTThe B2 ⌊ R ⌊ B19′ phase transformations in a Ni-50.7 at.% Ti alloy were investigated under a series of uniaxial tensile stresses. A custom-build X-ray sample holder with hot, cold and stressing stages was used for structure analysis at temperatures up to 140 °C under a variety of tensile stresses (up to 250 MPa). Reorientation and growth of favorably oriented variant domains of R phase and martensite under stress were observed. In the stress-assisted phase transformations, the favorable (020)M and (300)R planes are expected to align preferably parallel to (011)B2 planes, and the unfavorable (111)M and (112)R planes perpendicular to the (011)B2 planes. In addition, the results of semi-quantitative analyses of the relative amounts of parent phase and martensite formed under a specific stress and temperature condition, x=x(σ,T), are presented.


MRS Advances ◽  
2016 ◽  
Vol 1 (62) ◽  
pp. 4133-4137 ◽  
Author(s):  
E. Epifano ◽  
R. C. Belin ◽  
J-C Richaud ◽  
R. Vauchy ◽  
M. Strach ◽  
...  

ABSTRACTIn the frame of minor actinide recycling, (U,Am)O2 are promising transmutation targets. To assess the thermodynamic properties of the U-Am-O system, it is essential to have a thorough knowledge of the binary phase diagrams, which is difficult due to the lack of thermodynamic data on the Am-O system. Nevertheless, an Am-O phase diagram modelling has been recently proposed by Gotcu. Here, we show a recent investigation of the Am-O system using in-situ High Temperature X-ray Diffraction under controlled atmosphere. By coupling our experimental results with the thermodynamic calculations based on the Gotcu model, we propose for the first time a relation between the lattice parameter and the departure from stoichiometry.


Sign in / Sign up

Export Citation Format

Share Document