Depth profiling of Fe-implanted Si(100) by means of X-ray reflectivity and extremely asymmetric X-ray diffraction

2013 ◽  
Vol 46 (2) ◽  
pp. 505-511 ◽  
Author(s):  
B. Khanbabaee ◽  
A. Biermanns ◽  
S. Facsko ◽  
J. Grenzer ◽  
U. Pietsch

This article reports on surface density variations that are accompanied by ion-beam-induced pattern formation processes on Si. The density profiles perpendicular to Si(100) surfaces were investigated after off-normal implantation with 5 keV Fe+ions at fluences ranging from 1 × 1016to 5 × 1017 ions cm−2. Ripple formation was observed for ion fluences above 1 × 1016 ions cm−2. X-ray reflectivity (XRR) revealed the formation of a nanometre subsurface layer with incorporated Fe. Using XRR, no major dependence of the surface density on the ion fluence could be found. In order to improve the surface sensitivity, extremely asymmetric X-ray diffraction was applied. Depth profiling was achieved by measuring X-ray rocking curves as a function of the decreasing incidence angle down to 0° using this noncoplanar scattering geometry. The density information was extracted from the dynamical Bragg shift of the diffraction peak caused by refraction of the X-ray beam at the air–sample interface. Simulations based on the dynamical theory of X-ray diffraction revealed a decrease of density for increasing ion fluence in a region close to the surface, caused by the amorphization and surface roughening.

2003 ◽  
Vol 18 (1) ◽  
pp. 173-179 ◽  
Author(s):  
Maxim B. Kelman ◽  
Paul C. McIntyre ◽  
Bryan C. Hendrix ◽  
Steven M. Bilodeau ◽  
Jeffrey F. Roeder ◽  
...  

Structural properties of polycrystalline Pb(Zr0.35Ti0.65)O3 (PZT) thin films grown by metalorganic chemical vapor deposition on Ir bottom electrodes were investigated. Symmetric x-ray diffraction measurements showed that as-deposited 1500 íthick PZT films are partially tetragonal and partially rhombohedral. Cross-section scanning electron microscopy showed that these films have a polycrystalline columnar microstructure with grains extending through the thickness of the film. X-ray depth profiling using the grazing-incidence asymmetric Bragg scattering geometry suggests that each grain has a bilayer structure consisting of a near-surface region in the etragonal phase and the region at the bottom electrode interface in the rhombohedral hase. The required compatibility between the tetragonal and rhombohedral phases in he proposed layered structure of the 1500 Å PZT can explain the peak shifts observed n the symmetric x-ray diffraction results of thicker PZT films.


Author(s):  
Mark Denker ◽  
Jennifer Wall ◽  
Mark Ray ◽  
Richard Linton

Reactive ion beams such as O2+ and Cs+ are used in Secondary Ion Mass Spectrometry (SIMS) to analyze solids for trace impurities. Primary beam properties such as energy, dose, and incidence angle can be systematically varied to optimize depth resolution versus sensitivity tradeoffs for a given SIMS depth profiling application. However, it is generally observed that the sputtering process causes surface roughening, typically represented by nanometer-sized features such as cones, pits, pyramids, and ripples. A roughened surface will degrade the depth resolution of the SIMS data. The purpose of this study is to examine the relationship of the roughness of the surface to the primary ion beam energy, dose, and incidence angle. AFM offers the ability to quantitatively probe this surface roughness. For the initial investigations, the sample chosen was <100> silicon, and the ion beam was O2+.Work to date by other researchers typically employed Scanning Tunneling Microscopy (STM) to probe the surface topography.


2008 ◽  
Vol 41 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Václav Holý ◽  
Paul F. Fewster

A new method is presented for a calculation of the reciprocal-space distribution of X-ray diffracted intensity along a crystal truncation rod. In contrast to usual kinematical or dynamical approaches, the method is correct both in the reciprocal-lattice points and between them. In the method, the crystal is divided into a sequence of very thin slabs parallel to the surface; in contrast to the well known Darwin dynamical theory, the electron density in the slabs is constant along the surface normal. The diffracted intensity is calculated by a matrix formalism based on the Fresnel reflection and transmission coefficients. The method is applicable for any polarization of the primary beam and also in a non-coplanar scattering geometry.


1995 ◽  
Vol 396 ◽  
Author(s):  
J.K.N. Lindner ◽  
B. Götz ◽  
A. Frohnwieser ◽  
B. Stritzker

AbstractWell-defined, homogenous, deep-buried 3C-SiC layers have been formed in silicon by ion beam synthesis using MeV C+ ions. Layers are characterized by RBS/channeling, X-ray diffraction, x-sectional TEM and electron diffraction. The redistribution of implanted carbon atoms into a rectangular carbon depth distribution associated with a well-defined layer during the post-implantation anneal is shown to depend strongly on the existence of crystalline carbide precipitates in the as-implanted state.


1998 ◽  
Vol 5 (3) ◽  
pp. 967-968 ◽  
Author(s):  
Keiichi Hirano ◽  
Atsushi Momose

The phase shift of forward-diffracted X-rays by a perfect crystal is discussed on the basis of the dynamical theory of X-ray diffraction. By means of a triple Laue-case X-ray interferometer, the phase shift of forward-diffracted X-rays by a silicon crystal in the Bragg geometry was investigated.


1997 ◽  
Vol 07 (03n04) ◽  
pp. 265-275
Author(s):  
R. Q. Zhang ◽  
S. Yamamoto ◽  
Z. N. Dai ◽  
K. Narumi ◽  
A. Miyashita ◽  
...  

Natural FeTiO 3 (illuminate) and synthesized FeTiO 3, single crystals were characterized by Rutherford backscattering spectroscopy combined with channeling technique and particle-induced x-ray emission (RBS-C and PIXE). The results obtained by the ion beam analysis were supplemented by the x-ray diffraction analysis to identify the crystallographic phase. Oriented single crystals of synthesized FeTiO 3 were grown under the pressure control of CO 2 and H 2 mixture gas using a single-crystal floating zone technique. The crystal quality of synthesized FeTiO 3 single crystals could be improved by the thermal treatment but the exact pressure control is needed to avoid the precipitation of Fe 2 O 3 even during the annealing procedure. Natural FeTiO 3 contains several kinds of impurities such as Mn , Mg , Na and Si . The synthesized samples contain Al , Si and Na which are around 100 ppm level as impurities. The PBS-C results of the natural sample imply that Mn impurities occupy the Fe sublattice in FeTiO 3 or in mixed phase between ilmenite and hematite.


1998 ◽  
Vol 514 ◽  
Author(s):  
M. F. Wu ◽  
A. Vantomne ◽  
S. Hogg ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTThe Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.


CrystEngComm ◽  
2021 ◽  
Author(s):  
S. Magalhães ◽  
J. S. Cabaço ◽  
J. P. Araújo ◽  
E. Alves

New software for the simulation and fitting of 2θ–ω scans of symmetric and asymmetric reflections based on the dynamical theory of X-ray diffraction is presented.


Sign in / Sign up

Export Citation Format

Share Document