A New Small-Angle X-ray Scattering Instrument on the French CRG Beamline at the ESRF Multiwavelength Anomalous Scattering/Diffraction Beamline (D2AM)

1997 ◽  
Vol 30 (6) ◽  
pp. 900-904 ◽  
Author(s):  
J. P. Simon ◽  
S. Arnaud ◽  
F. Bley ◽  
J. F. Berar ◽  
B. Caillot ◽  
...  
2010 ◽  
Vol 43 (6) ◽  
pp. 1479-1487 ◽  
Author(s):  
Michael Sztucki ◽  
Emanuela Di Cola ◽  
Theyencheri Narayanan

An optimized instrument for anomalous small-angle X-ray scattering from charged soft matter is described. The experimental setup takes special care for single-photon detection sensitivity, high energy resolution of the monochromator,in situcalibration of intensity and energy, and the avoidance of radiation damage. Measured intensities are normalized to an absolute scale online, which can be further decomposed to resonant and non-resonant contributions. The performance of the instrument is demonstrated by an example involving cationic surfactant micelles with bromide counter-ions. The counter-ion profile around the micelle is deduced from the analysis of anomalous scattering near theK-absorption edge of bromine. Two different approaches yield similar results for the radial profile of the counter-ions, showing strong condensation of the counter-ions on the micellar surface, in agreement with the inference from electrochemical methods.


2018 ◽  
Vol 51 (2) ◽  
pp. 436-445 ◽  
Author(s):  
Christine Revenant

Grazing-incidence small-angle X-ray scattering (GISAXS) performed at several X-ray energies in the vicinity of the absorption edge of a considered element is called anomalous GISAXS (AGISAXS). This emerging technique takes advantage of the variation of the scattering factor near an absorption edge, allowing the morphology of multi-component nanomaterials to be unraveled. The selected model system for AGISAXS simulations is mainly an In2O3layer containing Ga2O3-based nanoparticles. The transmission coefficients at the different X-ray energies near the GaKedge are identical at one specific incident angle (near the critical angle). Hence, it could be relevant to perform AGISAXS at this incident angle in order to cancel the transmission modification as the X-ray energy changes. For buried nanoparticles, grazing-incidence effects are negligible with respect to the anomalous element-specific contribution provided that the experiments are performed at energies a few electronvolts below the absorption edge. Interestingly, AGISAXS has a clearly different intensity behaviorversusX-ray energy for an embedded monodisperse spherical particle, a hole and a core–shell particle. Hence, AGISAXS can be used to unambiguously distinguish such embedded particles. Moreover, even for a dense layer of core–shell nanoparticles on a substrate, anomalous effects are much larger than grazing effects as the X-ray energy changes. Finally, it is shown that experimental anomalous scattering can be significant and can be satisfactorily simulated.


1991 ◽  
Vol 24 (1) ◽  
pp. 30-37 ◽  
Author(s):  
G. G. Long ◽  
P. R. Jemian ◽  
J. R. Weertman ◽  
D. R. Black ◽  
H. E. Burdette ◽  
...  

1998 ◽  
Vol 31 (5) ◽  
pp. 783-788 ◽  
Author(s):  
C. Revenant-Brizard ◽  
J. P. Simon ◽  
J. R. Regnard ◽  
I. Manzini ◽  
B. Rodmacq

The structural evolution of co-sputtered Ag–20 (and 35) at.% Co and Ag–20 (and 35) at.% Ni was studied by anomalous small-angle X-ray scattering in the as-deposited state and after different anneals for 10 min at 573, 623 and 723 K. Anomalous scattering was used to separate the part of the scattering signal due to the transition metal particles from the signal of other heterogeneities. Strong segregation, involving about two-thirds of the Co (or Ni) atoms, already exists for the as-deposited state. After a 573 K anneal, the phases (Ag matrix and Co or Ni well defined particles) have almost reached equilibrium,i.e.complete immiscibility. Most of the magnetic particles are three dimensional with an average radius of 5–25 Å and the average distance between the particles varies from 17 to 110 Å, depending on the magnetic element and its concentration, and on the annealing conditions. The size distribution does not correspond to that of usual coarsening, but becomes broader after extended annealing. This is probably due to heterogeneous precipitation at grain boundaries of the Ag matrix.


2021 ◽  
Vol 54 (3) ◽  
Author(s):  
D. C. F. Wieland ◽  
M. A. Schroer ◽  
A. Yu. Gruzinov ◽  
C. E. Blanchet ◽  
C. M. Jeffries ◽  
...  

Small-angle X-ray scattering is widely utilized to study biological macromolecules in solution. For samples containing specific (e.g. metal) atoms, additional information can be obtained using anomalous scattering. Here, measuring samples at different energies close to the absorption edges of relevant elements provides specific structural details. However, anomalous small-angle X-ray scattering (ASAXS) applications to dilute macromolecular solutions are challenging owing to the overall low anomalous scattering effect. Here, pilot ASAXS experiments from dilute solutions of ferritin and cobalt-loaded apoferritin are reported. These samples were investigated near the resonance X-ray K edges of Fe and Co, respectively, at the EMBL P12 bioSAXS beamline at PETRA III, DESY. Thanks to the high brilliance of the P12 beamline, ASAXS experiments are feasible on dilute protein solutions, allowing one to extract the Fe- or Co-specific anomalous dispersion terms from the ASAXS data. The data were subsequently used to determine the spatial distribution of either iron or cobalt atoms incorporated into the ferritin/apoferritin protein cages.


2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Sign in / Sign up

Export Citation Format

Share Document