Ab initio determination of the valence electron distribution in the average structure of the incommensurately modulated calaverite AuTe2

2001 ◽  
Vol 57 (5) ◽  
pp. 633-637 ◽  
Author(s):  
Razvan Caracas ◽  
Xavier Gonze

The valence-electron density distribution of the average structure of incommensurately modulated calaverite, AuTe2, has been computed using density-functional theory. High-density regions, centered around the Au and Te atoms, are not spheric, but present charge concentrations along the Au—Te and Te—Te bonds. The electronic band structure and its corresponding density of states reveal the presence of three electronic band groups, constituted mainly by Te 5s, Au 5d and hybrids of Te 6p + Au 6s + Au 5d orbitals. The electrons belonging to the last block are responsible for the chemical bonds.

1994 ◽  
Vol 349 ◽  
Author(s):  
Andrew A. Quong ◽  
Mark R. Pederson

ABSTRACTWe use the local-density-approximation to the density-functional theory to determine the axial polarizabilities of fullerene tubules as a function of length and winding topologies. Specifically, we present linear polarizabilities for tubules of composition C12H24, C36H24, C40H20 and C60H24. The size-dependent variation in the dipole-coupled gaps between pairs of occupied and unoccupied levels leads to enhancements in the polarizability per valence electron as the length of the tubule increases. The results are compared to recent densityfunctional based calculations of the linear and nonlinear polarizabilities for fullerene and benzene molecules.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 545 ◽  
Author(s):  
Aleksandr S. Oreshonkov ◽  
Evgenii M. Roginskii ◽  
Nikolai P. Shestakov ◽  
Irina A. Gudim ◽  
Vladislav L. Temerov ◽  
...  

The crystal structure of YAl3(BO3)4 is obtained by Rietveld refinement analysis in the present study. The dynamical properties are studied both theoretically and experimentally. The experimental Raman and Infrared spectra are interpreted using the results of ab initio calculations within density functional theory. The phonon band gap in the Infrared spectrum is observed in both trigonal and hypothetical monoclinic structures of YAl3(BO3)4. The electronic band structure is studied theoretically, and the value of the band gap is obtained. It was found that the YAl3(BO3)4 is an indirect band gap dielectric material.


2009 ◽  
Vol 23 (32) ◽  
pp. 5929-5934 ◽  
Author(s):  
T. JEONG

The electronic band structure of LuPd 2 Si 2 was studied based on the density functional theory within local density approximation and fully relativistic schemes. The Lu 4f states are completely filled and have flat bands around -5.0 eV. The fully relativistic band structure scheme shows that spin–orbit coupling splits the 4f states into two manifolds, the 4f7/2 and the 4f5/2 multiplet.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1806-C1806
Author(s):  
Samir Bentata ◽  
Bouabdellah Bouadjemi ◽  
Tayeb Lantri ◽  
Wissem Benstaali

We investigate the structural, electronic and magnetic properties of the orthorhombic Perovskite oxyde NdMnO3 through density-functional-theory (DFT) calculations using both generalized gradient approximation GGA+U, where U is on-site Coulomb interaction correction. The electronic band structure, the partial and total density of states (DOS) and the magnetic moment are determined. The results show a half-metallic ferromagnetic ground state for the orthorhombic NdMnO3.


2012 ◽  
Vol 488-489 ◽  
pp. 129-132 ◽  
Author(s):  
C. Kanagaraj ◽  
Baskaran Natesan

We have performed detailed structural, electronic and magnetic properties of high - TC multiferroic CuO using first principles density functional theory. The total energy results revealed that AFM is the most stable magnetic ground state of CuO. The DOS and electronic band structure calculations show that in the absence of on-site Coulomb interaction (U), AFM structure of CuO heads to a metallic state. However, upon incorporating U in the calculations, a band gap of 1.2 eV is recovered. Furthermore, the Born effective charges calculated on Cu does not show any anomalous character.This suggests that the polarization seen in CuO could be attributed to the spin induced AFM ordering effect.


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 42-52
Author(s):  
M. Munawar ◽  
M. Idrees ◽  
Iftikhar Ahmad ◽  
H. U. Din ◽  
B. Amin

Using density functional theory calculations, we have investigated the electronic band structure, optical and photocatalytic response of BSe, M2CO2 (M = Ti, Zr, Hf) monolayers and their corresponding BSe–M2CO2 (M = Ti, Zr, Hf) van der Waals heterostructures.


2020 ◽  
Vol 17 (2) ◽  
pp. 149
Author(s):  
Nurakma Natasya Md Jahangir Alam ◽  
Nur Aisyah Ab Malik Marwan ◽  
Mohd Hazrie Samat ◽  
Muhammad Zamir Mohyedin ◽  
Nur Hafiz Hussin ◽  
...  

Works are centered on exploring lead-free ferroelectric materials that have a comparable unique ns2 solitary pair electrons with Pb (II), for example, Sn (II) using the first-principles study. All counts were performed dependent on Density Functional Theory (DFT) that has been executed in CASTEP. GGA-PBE displays the most exact qualities for cross-section parameters concerning exploratory qualities for both cubic PbTiO3. In the interim, GGA-PBEsol functional is exact for tetragonal PTO. The electronic band structure and density of states show the presence of hybridizations between anion O 2p and cation Pb 6s/Sn 5s unique solitary pair in tetragonal PTO and SnTO stage.


2019 ◽  
Vol 33 (07) ◽  
pp. 1950045
Author(s):  
R. Mahdjoubi ◽  
Y. Megdoud ◽  
L. Tairi ◽  
H. Meradji ◽  
Z. Chouahda ◽  
...  

First-principles calculations of the structural, electronic, optical and thermal properties of chalcopyrite CuXTe2 (X[Formula: see text]=[Formula: see text]Al, Ga, In) have been performed within density functional theory using the full-potential linearized augmented plane wave (FP-LAPW) method, by employing for the exchange and correlation potential the approximations WC-GGA and mBJ-GGA. The effect of X cations replacement on the structural, electronic band structure, density of states and optical properties were highlighted and explained. Our results are in good agreement with the previous theoretical and experimental data. As far as we know, for the first time we find the effects of temperature and pressure on thermal parameters of CuAlTe2 and CuGaTe2 compounds. Thermal properties are very useful for optimizing crystal growth, and predict photovoltaic applications on extreme thermodynamic conditions.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250035
Author(s):  
ANURAG SRIVASTAVA ◽  
NEHA TYAGI

We have analyzed the one-dimensional (1D) ZnO nanocrystals in its wurtzite (B4); zinc-blende (B3) and rocksalt (B1) type phases, by means of density functional theory (DFT) calculations. The energetic stability of nanocrystal has been analyzed using Revised Perdew–Burke–Ernzerhof (revPBE) type parameterized GGA potential. The B3 type phase is most stable amongst other phases of nanocrystals. The computation of ground state properties for all the phases of ZnO nanocrystals finds that the bulk modulus are smaller than their bulk counterpart, in turn softening the material at reduced dimensions. The electronic band structure analysis confirms the semiconducting nature of B4 type phase whereas other two are metallic.


Sign in / Sign up

Export Citation Format

Share Document