42 salt forms of tyramine: structural comparison and the occurrence of hydrate formation

2012 ◽  
Vol 68 (4) ◽  
pp. 453-464 ◽  
Author(s):  
Naomi E. B. Briggs ◽  
Alan R. Kennedy ◽  
Catriona A. Morrison

The single-crystal diffraction structures of 38 salt forms of the base tyramine (4-hydroxyphenethylamine) are reported for the first time. Together with literature examples, these structures are discussed with respect to cation conformation, cation packing, hydrogen bonding and hydrate formation. It is found that isostructural cation packing can occur even with structurally different anions, with different hydration states and with different hydrogen bonding. Hydrate formation is found to be more likely both (i) when there is an increase in the total number of potential hydrogen bond acceptor and donor atoms; and (ii) when the ratio of potential hydrogen bond donor to acceptor atoms is low.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph A. Bauer ◽  
Gisbert Schneider ◽  
Andreas H. Göller

Abstract We present machine learning (ML) models for hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) strengths. Quantum chemical (QC) free energies in solution for 1:1 hydrogen-bonded complex formation to the reference molecules 4-fluorophenol and acetone serve as our target values. Our acceptor and donor databases are the largest on record with 4426 and 1036 data points, respectively. After scanning over radial atomic descriptors and ML methods, our final trained HBA and HBD ML models achieve RMSEs of 3.8 kJ mol−1 (acceptors), and 2.3 kJ mol−1 (donors) on experimental test sets, respectively. This performance is comparable with previous models that are trained on experimental hydrogen bonding free energies, indicating that molecular QC data can serve as substitute for experiment. The potential ramifications thereof could lead to a full replacement of wetlab chemistry for HBA/HBD strength determination by QC. As a possible chemical application of our ML models, we highlight our predicted HBA and HBD strengths as possible descriptors in two case studies on trends in intramolecular hydrogen bonding.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012006
Author(s):  
N R Yusuf ◽  
S Yusup ◽  
C L Yiin ◽  
P J Ratri ◽  
A A Halim ◽  
...  

Abstract The concept of sustainable and green solvent has always highlighted in the field of energy and environmental science. The synthesis and application of natural-based Low Transition Temperature Mixture (LTTM) as a novel and green solvent for the lignocellulose biomass pre-treatment such as delignification of Oil-Palm Empty Fruit Bunch (EFB) have been greatly emphasized. In this present work, the investigation of LTTM efficiency as green solvent in delignification process was conducted using both theoretical and experimental studies. Initially, screening of solvation properties of different types of hydrogen bond acceptor (HBA) and predicted hydrogen bond donor (HBD) for synthesis of LTTMs was conducted using conductor-like screening model (COSMO-RS) software and formation of hydrogen bonding was evidenced using NMR spectroscopy analysis. Three types of HBA namely sucrose, choline chloride and monosodium glutamate were mixed with malic acids as HBD and their charge density distribution on the surface was determined through sigma profile (σ). The COSMO-RS results determined the σ profile of pure component malic acid to be 11.42, sucrose to be 25.37 and the total value of σ profile for mixtures is 14.19 as the best combination of LTTM composition compared to LTTM from choline chloride and monosodium glutamate (MSG). The reliability of the COSMO-RS predictions data was correlated with Nuclear Magnetic Resonance (NMR) analysis through determination of peaks with chemical shifts hydrogen bonding that suggested existence of potential interaction between malic acids and sucrose has occurred.


2008 ◽  
Vol 64 (3) ◽  
pp. 338-347 ◽  
Author(s):  
Soleymane Koné ◽  
Nicolas Galland ◽  
El-Hadji Sawaliho Bamba ◽  
Jean-Yves Le Questel

The hydrogen-bonding properties of galanthamine have been investigated experimentally from a thorough analysis of crystallographic data retrieved from the Protein Data Bank and Cambridge Structural Database databases and theoretically through ab initio [MP2/6-311++G(2d,p)] and density functional theory [MPWB1K/6-31++G(d,p)] calculations. The main hydrogen-bond acceptor (HBA) interaction sites of the molecule are the O atoms and their spatial proximity allows multi-centered hydrogen-bond (HB) motifs. The hydrogen-bond donor (HBD) sites of the molecule are the NH+ and OH groups as well as several CH donors. Among them, the preferred ones are those directly linked to the ammonium nitrogen, followed by aromatic CH and finally the methyl group of the methoxy substituent. All these observations are in fairly good agreement with the computed positions of the molecular electrostatic potential (MEP) minima and maxima of various galanthamine species. The galanthamine HBD and HBA properties, investigated through the MEP analysis, appear sensitive to the degree of neutralization of the ammonium NH+ positive charge.


2017 ◽  
Vol 70 (5) ◽  
pp. 529 ◽  
Author(s):  
Hasti Iranmanesh ◽  
Kasun S. A. Arachchige ◽  
William A. Donald ◽  
Niamh Kyriacou ◽  
Chao Shen ◽  
...  

Four heteroleptic ruthenium(ii) complexes of 4′-functionalised 2,2′:6′,2′′-terpyridine are reported, along with their solid-state single-crystal X-ray structures. The complexes feature complementary hydrogen-bond donor (phenol) and acceptor (pyridyl) groups designed to assemble into one-dimensional polymers. In one example, the system obeys the programmed instructions to form a one-dimensional, self-complementary hydrogen-bonded polymer. In one other example, a water-bridged hydrogen-bonded polymer is formed. In the remaining two structures, aryl–aryl interactions dominate the intermolecular interactions, and outweigh the contribution of intermolecular hydrogen bonding.


2011 ◽  
Vol 83 (8) ◽  
pp. 1619-1636 ◽  
Author(s):  
Elangannan Arunan ◽  
Gautam R. Desiraju ◽  
Roger A. Klein ◽  
Joanna Sadlej ◽  
Steve Scheiner ◽  
...  

The term “hydrogen bond” has been used in the literature for nearly a century now. While its importance has been realized by physicists, chemists, biologists, and material scientists, there has been a continual debate about what this term means. This debate has intensified following some important experimental results, especially in the last decade, which questioned the basis of the traditional view on hydrogen bonding. Most important among them are the direct experimental evidence for a partial covalent nature and the observation of a blue-shift in stretching frequency following X–H···Y hydrogen bond formation (XH being the hydrogen bond donor and Y being the hydrogen bond acceptor). Considering the recent experimental and theoretical advances, we have proposed a new definition of the hydrogen bond, which emphasizes the need for evidence. A list of criteria has been provided, and these can be used as evidence for the hydrogen bond formation. This list is followed by some characteristics that are observed in typical hydrogen-bonding environments.


2008 ◽  
Vol 73 (11) ◽  
pp. 1457-1474 ◽  
Author(s):  
Eugene S. Kryachko

The present work outlines the fair relationship of the computational model with the experiments on anion photoelectron spectroscopy for the gold-water complexes [Au(H2O)1≤n≤2]- that is established between the auride anion Au- and water monomer and dimer thanks to the nonconventional hydrogen bond where Au- casts as the nonconventional proton acceptor. This work also extends the computational model to the larger complexes [Au(H2O)3≤n≤5]- where gold considerably thwarts the shape of water clusters and even particularly breaks their conventional hydrogen bonding patterns. The fascinating phenomenon of the lavish proton acceptor character of Au- to form at least six hydrogen bonds with molecules of water is computationally unveiled in the present work for the first time.


2006 ◽  
Vol 62 (5) ◽  
pp. o1754-o1755
Author(s):  
Neng-Fang She ◽  
Sheng-Li Hu ◽  
Hui-Zhen Guo ◽  
An-Xin Wu

The title compound, C24H18Br2N4O2·H2O, forms a supramolecular structure via N—H...O, O—H...O and C—H...O hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2292 ◽  
Author(s):  
Qi-Long Zhang ◽  
Qing Yu ◽  
Hai-Fang Xie ◽  
Bo Tu ◽  
Hong Xu ◽  
...  

In this study, six coordination polymers (CPs), {[Ag2(L)(CF3SO3)]·CF3SO3·2H2O·DMF}n (1), {[Ag(L)]·SbF6·4DMF·H2O}n (2), {[Zn(L)0.5(I)2]·3.75H2O}n (3), {[Cd2(L)(I)4(H2O)(DMF)]·4H2O·3DMF}n (4), {[Hg2(L)(I)4]·H2O·4DMF}n (5) and {[Hg2(L)(Cl)4]·2H2O·3DMF}n (6), were obtained based on the designed X-shaped urea-based ligand. X-ray single crystal diffraction analysis revealed that complex 1 displayed a 3D (3,4)-connected {6·82}{64·82}-tcj net. Complex 2 featured a 2D 4-connected {43·63} sheet. Complexes 3 and 5 exhibited a 1D polymeric loop chain. Complex 4 displayed a 1D polymeric fishbone chain. Complex 6 showed a 2D 4-connected {44·62}-sql sheet. Structural comparison revealed that not only the metal ions, but also the anions played crucial roles in the control of final structures.


2018 ◽  
Vol 74 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Pamela Allan ◽  
Jean-Baptiste Arlin ◽  
Alan R. Kennedy ◽  
Aiden Walls

Ten isostructural single-crystal diffraction studies of mixed cation Ca/Sr salt forms of the salicylate anion are presented, namely catena-poly[[diaquacalcium(II)/strontium(II)]-bis(μ2-2-hydroxybenzoato)], [Ca1–x Sr x (C7H5O3)2(H2O)2] n , where x = 0, 0.041, 0.083, 0.165, 0.306, 0.529, 0.632, 0.789, 0.835 and 1. The structure of an isostructural Sr/Ba species, namely catena-poly[[diaquastrontium(II)/barium(II)]-bis(μ2-2-hydroxybenzoato)], [Sr0.729Ba0.271(C7H5O3)2(H2O)2], is also described. The Ca/Sr structures form a series where, with increasing Sr content, the unit cell expands in both the crystallographic a and c directions (by 1.80 and 3.18%, respectively), but contracts slightly in the b direction (−0.31%). The largest percentage structural expansion lies parallel to the direction of propagation of the one-dimensional coordination polymer that is the primary structural feature. This structural expansion is thus associated with increased M—O distances. Aqueous solubility measurements show that solubility generally increases with increasing Sr content. Thus, tuning the composition of these mixed counter-ion salt forms leads to systematic structural changes and allows solubility to be tuned to values between those for the pure Ca and Sr species.


CrystEngComm ◽  
2020 ◽  
Vol 22 (37) ◽  
pp. 6152-6160
Author(s):  
Sandeep Kumar Dey ◽  
Archana ◽  
Sybil Pereira ◽  
Sarvesh S. Harmalkar ◽  
Shashank N. Mhaldar ◽  
...  

Intramolecular N–H⋯OC hydrogen bonding between the inner amide groups dictates the receptor–anion complementarity in a tripodal receptor towards selective encapsulation of hydrogenphosphate in the outer urea cavity by multiple hydrogen bonds.


Sign in / Sign up

Export Citation Format

Share Document