Energetic Materials: The Preparation and Structural Characterization of Three Biguanidinium Dinitramides

1997 ◽  
Vol 53 (3) ◽  
pp. 504-512 ◽  
Author(s):  
A. Martin ◽  
A. A. Pinkerton ◽  
R. D. Gilardi ◽  
J. C. Bottaro

Three biguanidinium salts of the energetic dinitramide anion have been prepared and structurally characterized from room-temperature X-ray diffraction data. Biguanidinium mono-dinitramide, (BIGH)(DN), triclinic, P\overline 1, a = 4.3686 (4), b = 9.404 (2), c = 10.742 (1) Å, \alpha = 83.54 (1), \beta = 80.386 (9), \gamma = 79.93 (1)°, V = 426.8 (1) Å3, Z = 2, D x = 1.62 g cm−3. Biguanidinium bis-dinitramide, (BIGH2)(DN)2, monoclinic, C2/c, a = 11.892 (2), b = 8.131 (1), c = 13.038 (2) Å, \beta = 115.79 (1)°, V = 1135.1 (3) Å3, Z = 4, D x = 1.84 g cm−3. Biguanidinium bis-dinitramide monohydrate, (BIGH2)(DN)2.H2O, orthorhombic, P212121, a = 6.4201 (6), b = 13.408 (1), c = 14.584 (2) Å, V = 1255.4 (4) Å3, Z = 4, D x = 1.76 g cm−3. All three structures are characterized by extensive hydrogen bonding. Both the mono- and diprotontated cations consist of two planar halves twisted with respect to each other. The dinitramide anion has a surprisingly variable and asymmetric structure. The two halves of the anion are twisted with respect to each other; however, the twist varies from 5.1 to 28.9°. In addition, the two ends of the anion have significantly different geometries, e.g. the `equivalent' N—N bond lengths differ by up to 0.045 Å.

2017 ◽  
Vol 72 (2) ◽  
pp. 153-158 ◽  
Author(s):  
Sebastian Bräuchle ◽  
Hubert Huppertz

AbstractLi3Y(BO3)2 was prepared by high-temperature solid state synthesis at 900°C in a platinum crucible from lithium carbonate, boric acid, and yttrium(III) oxide. The compound crystallizes monoclinically in the space group P21/c (no. 14) (Z=4) isotypically to Li3Gd(BO3)2. The structure was refined from single-crystal X-ray diffraction data: a=8.616(3), b=6.416(3), c=10.014(2) Å, β=116.6(2)°, V=494.9(3) Å3, R1=0.0211, and wR2=0.0378 for all data. The crystal structure of Li3Y(BO3)2 consists of [Y2O14] dinuclear units, which are interconnected to each other by planar B(1)O3 groups and LiO4 tetrahedra via common edges and corners along the a axis.


2007 ◽  
Vol 63 (2) ◽  
pp. 270-276 ◽  
Author(s):  
Thomas Reeswinkel ◽  
Sebastian Prinz ◽  
Karine M. Sparta ◽  
Georg Roth

The new spin ½ V4+ barium oxovanadate BaV4O9 was synthesized and studied by means of single-crystal X-ray diffraction. Its room-temperature structure is monoclinic, space group P2/c. We discuss the temperature evolution of the crystal structure and thermal expansion tensor of the material between 293 and 100 K.


2016 ◽  
Vol 71 (12) ◽  
pp. 1225-1232
Author(s):  
Sebastian Bräuchle ◽  
Clivia Hejny ◽  
Hubert Huppertz

AbstractBaSr2Ge3O9 was prepared by high-temperature solid-state synthesis at 1100°C in a platinum crucible from barium carbonate, strontium carbonate, and germanium(IV) oxide. The compound crystallizes in the triclinic space group P1̅ (no. 2) isotypically to walstromite BaCa2Si3O9. The structure was refined from single-crystal X-ray diffraction data: a=7.104(5), b=10.060(7), c=7.099(5) Å, α=83.0(2), β=77.0(2), γ=70.2(2)°, V=464.3(6) Å3, R1=0.0230, and wR2=0.0602 for all data. BaSr2Ge3O9 is characterized by three-membered rings of germanate tetrahedra. There are three crystallographically different Ge sites (Ge1, Ge2, and Ge3) in each [Ge3O9]6− ring. The rings occur in layers with the apices of alternating rings pointing in opposite directions. The Sr2+ and Ba2+ ions are located in between. The Sr1 cation is eight-fold coordinated, while Sr2 is octahedrally surrounded by oxide anions, and the Ba cation again eight-fold coordinated.


1996 ◽  
Vol 49 (12) ◽  
pp. 1273 ◽  
Author(s):  
AL Maclean ◽  
GJ Foran ◽  
BJ Kennedy ◽  
P Turner ◽  
TW Hambley

The structure of 5,10,15,20-tetraphenylporphinatonickel(II) ([Ni( tpp )]) has been studied by both X-ray diffraction (powder and single-crystal methods) and EXAFS. The bond lengths obtained from analysis of the EXAFS agree, within standard deviations, with those obtained from the X-ray diffraction studies. The Ni-N bond length of 1.93(1) Ǻ agrees especially well with the value of 1.931(2) Ǻ obtained from the single-crystal analysis. The powder X-ray diffraction pattern, collected by using synchrotron radiation, is presented.


2010 ◽  
Vol 66 (2) ◽  
pp. 158-164 ◽  
Author(s):  
Marcella Cadoni ◽  
Yan Ling Cheah ◽  
Giovanni Ferraris

Four heteropolyhedral microporous silicates, A 3RESi6O15·2.25H2O, crystallizing in the Cmm2 space group and based on 41516182 tetrahedral sheets [A 3 = Na2.74K0.26, RE = Ce, abbreviated as TR05; TR06: A 3 = Na2.72K0.28, RE = La; TR07: A 3 = Na3, RE = La; TR08: A 3 = Na2.74(H3O)0.26, RE = La0.68Eu0.32] have been hydrothermally synthesized in Teflon-lined autoclaves at 503 K and structurally characterized using X-ray diffraction single-crystal data. Except for TR05, diffraction data have been collected on {001} twins by merohedry. The four structures are isotypic and based on strongly corrugated 41516182 silicate sheets interconnected along [010] by seven-coordinated RE polyhedra to form a microporous heteropolyhedral framework. The framework is crossed by three systems of ellipsoidal channels that host H2O molecules and alkaline ions. The channels run either parallel or perpendicular to the silicate sheets; the largest effective channel width is 4.7 × 2 Å. In TR08 some (H3O)+ replaces alkalis. Although the H atoms have not been localized, the configuration of the hydrogen bonding has been deduced from bond lengths and angles.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3502
Author(s):  
Fangzhou Song ◽  
Masayoshi Uematsu ◽  
Takeshi Yabutsuka ◽  
Takeshi Yao ◽  
Shigeomi Takai

LATP-based composite electrolytes were prepared by sintering the mixtures of LATP precursor and La2O3 nano-powder. Powder X-ray diffraction and scanning electron microscopy suggest that La2O3 can react with LATP during sintering to form fine LaPO4 particles that are dispersed in the LATP matrix. The room temperature conductivity initially increases with La2O3 nano-powder addition showing the maximum of 0.69 mS∙cm−1 at 6 wt.%, above which, conductivity decreases with the introduction of La2O3. The activation energy of conductivity is not largely varied with the La2O3 content, suggesting that the conduction mechanism is essentially preserved despite LaPO4 dispersion. In comparison with the previously reported LATP-LLTO system, although some unidentified impurity slightly reduces the conductivity maximum, the fine dispersion of LaPO4 particles can be achieved in the LATP–La2O3 system.


2000 ◽  
Vol 5 (S1) ◽  
pp. 412-424
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document