A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel

2013 ◽  
Vol 69 (10) ◽  
pp. 1901-1910 ◽  
Author(s):  
Hui-Ling Cao ◽  
Li-Hua Sun ◽  
Jian Li ◽  
Lin Tang ◽  
Hui-Meng Lu ◽  
...  

High-quality crystals are key to obtaining accurate three-dimensional structures of proteins using X-ray diffraction techniques. However, obtaining such protein crystals is often a challenge. Several containerless crystallization techniques have been reported to have the ability to improve crystal quality, but it is unknown which is the most favourable way to grow high-quality protein crystals. In this paper, a quality comparison of protein crystals which were grown under three containerless conditions provided by diamagnetic levitation, silicone oil and agarose gel was conducted. A control experiment on a vessel wall was also simultaneously carried out. Seven different proteins were crystallized under the four conditions, and the crystal quality was assessed in terms of the resolution limit, the mosaicity and theRmerge. It was found that the crystals grown under the three containerless conditions demonstrated better morphology than those of the control. X-ray diffraction data indicated that the quality of the crystals grown under the three containerless conditions was better than that of the control. Of the three containerless crystallization techniques, the diamagnetic levitation technique exhibited the best performance in enhancing crystal quality. This paper is to our knowledge the first report of improvement of crystal quality using a diamagnetic levitation technique. Crystals obtained from agarose gel demonstrated the second best improvement in crystal quality. The study indicated that the diamagnetic levitation technique is indeed a favourable method for growing high-quality protein crystals, and its utilization is thus potentially useful in practical efforts to obtain well diffracting protein crystals.

Author(s):  
Koji INAKA ◽  
Saori ICHIMIZU ◽  
Izumi YOSHIZAKI ◽  
Kiyohito KIHIRA ◽  
Elena G. LAVRENKO ◽  
...  

A series of space experiments aboard the International Space Station (ISS) associated with high-quality Protein Crystal Growth (PCG) in microgravity conditions can be considered as a unique and one of the best examples of fruitful collaboration between Japanese and Russian scientists and engineers in space, which includes also other ISS International Partners. X-ray diffraction is still the most powerful tool to determine the protein three dimensional structure necessary for Structure based drug design (SBDD). The major purpose of the experiment is to grow high quality protein crystals in microgravity for X-ray diffraction on Earth. Within one and a half decade, Japan and Russia have established an efficient process over PCG in space to support latest developments over drug design and structural biology. One of the keys for success of the experiment lies in how precisely pre-launch preparations are made. Japanese party provides flight equipment for crystallization and ensures the required environment to support the experiment aboard of the ISS’s Kibo module, and also mainly takes part of the experiment ground support such as protein sample characterization, purification, crystallization screening, and solution optimization for microgravity experiment. Russian party is responsible for integration of the flight items equipped with proteins and precipitants on board Russian transportation space vehicles (Soyuz or Progress), for delivery them at the ISS, transfer to Kibo module, and returning the experiments’ results back on Earth aboard Soyuz manned capsule. Due to close cooperation of the parties and solid organizational structure, samples can be launched at the ISS every half a year if the ground preparation goes smoothly. The samples are crystallized using counter diffusion method at 20 degree C for 1–2.5 months. After samples return, the crystals are carefully taken out from the capillary, and frozen for X-ray diffraction at SPring8 facility in Japan. Extensive support of researchers from both countries is also a part of this process. The paper analyses details of the PCG experiment scheme, unique and reliable technology of its execution, and contains examples of the application. Key words: International Space Station, Protein crystals, Microgravity, International collaboration.


Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 501 ◽  
Author(s):  
Li ◽  
Yan ◽  
Liu ◽  
Wu ◽  
Liu ◽  
...  

We present a systematic quality comparison of protein crystals obtained with and without cross-linked protein crystal (CLPC) seeds. Four proteins were used to conduct the experiments, and the results showed that crystals obtained in the presence of CLPC seeds exhibited a better morphology. In addition, the X-ray diffraction data showed that the CLPC seeds method is a powerful tool to obtain high-quality protein crystals. Therefore, we recommend the use of CLPC seeds in preparing high-quality diffracting protein crystals.


2015 ◽  
Vol 48 (3) ◽  
pp. 758-762 ◽  
Author(s):  
Hai Hou ◽  
Yue Liu ◽  
Bo Wang ◽  
Fan Jiang ◽  
Hao-Ran Tao ◽  
...  

The quality of protein crystals is an important parameter for structural determination with X-ray crystallography. Indeed, a prerequisite for obtaining high-resolution diffraction data is that the crystals be of sufficient quality. However, obtaining high-quality protein crystals is a well known bottleneck to protein structural determination that remains a difficult task. In this paper, it is demonstrated that recrystallization can be an effective method of improving the quality of protein crystals. Five proteins, lysozyme, proteinase K, concanavalin A, thaumatin and catalase, were used for this investigation, and the crystal quality of these proteins was examined using X-ray diffraction before and after recrystallization. Comparisons of the crystals before and after recrystallization verified that recrystallization not only enhanced the morphology of the crystals but also improved crystal quality. Therefore, it is proposed that recrystallization might be a useful alternative method for obtaining protein crystals with enhanced diffraction.


2018 ◽  
Vol 115 (14) ◽  
pp. 3634-3639 ◽  
Author(s):  
Ryo Suzuki ◽  
Haruhiko Koizumi ◽  
Keiichi Hirano ◽  
Takashi Kumasaka ◽  
Kenichi Kojima ◽  
...  

High-quality protein crystals meant for structural analysis by X-ray diffraction have been grown by various methods. The observation of dynamical diffraction in protein crystals is an interesting topic because dynamical diffraction generally occurs in perfect crystals such as Si crystals. However, to our knowledge, there is no report yet on protein crystals showing clear dynamical diffraction. We wonder whether the perfection of protein crystals might still be low compared with that of high-quality Si crystals. Here, we present observations of the oscillatory profile of rocking curves for protein crystals such as glucose isomerase crystals. The oscillatory profiles are in good agreement with those predicted by the dynamical theory of diffraction. We demonstrate that dynamical diffraction occurs even in protein crystals. This suggests the possibility of the use of dynamical diffraction for the determination of the structure and charge density of proteins.


2013 ◽  
Vol 69 (12) ◽  
pp. 2583-2583 ◽  
Author(s):  
Hui-Ling Cao ◽  
Li-Hua Sun ◽  
Jian Li ◽  
Lin Tang ◽  
Hui-Meng Lu ◽  
...  

Table 2 of the article by Caoet al.[(2013),Acta Cryst.D69, 1901–1910] is corrected.


IUCrJ ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 500-508 ◽  
Author(s):  
Emma V. Beale ◽  
Anna J. Warren ◽  
José Trincão ◽  
James Beilsten-Edmands ◽  
Adam D. Crawshaw ◽  
...  

Developing methods to determine high-resolution structures from micrometre- or even submicrometre-sized protein crystals has become increasingly important in recent years. This applies to both large protein complexes and membrane proteins, where protein production and the subsequent growth of large homogeneous crystals is often challenging, and to samples which yield only micro- or nanocrystals such as amyloid or viral polyhedrin proteins. The versatile macromolecular crystallography microfocus (VMXm) beamline at Diamond Light Source specializes in X-ray diffraction measurements from micro- and nanocrystals. Because of the possibility of measuring data from crystalline samples that approach the resolution limit of visible-light microscopy, the beamline design includes a scanning electron microscope (SEM) to visualize, locate and accurately centre crystals for X-ray diffraction experiments. To ensure that scanning electron microscopy is an appropriate method for sample visualization, tests were carried out to assess the effect of SEM radiation on diffraction quality. Cytoplasmic polyhedrosis virus polyhedrin protein crystals cryocooled on electron-microscopy grids were exposed to SEM radiation before X-ray diffraction data were collected. After processing the data with DIALS, no statistically significant difference in data quality was found between datasets collected from crystals exposed and not exposed to SEM radiation. This study supports the use of an SEM as a tool for the visualization of protein crystals and as an integrated visualization tool on the VMXm beamline.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 944-954 ◽  
Author(s):  
Jeremy M. Schieferstein ◽  
Ashtamurthy S. Pawate ◽  
Michael J. Varel ◽  
Sudipto Guha ◽  
Ieva Astrauskaite ◽  
...  

Microfluidic platforms for formulation of crystallization trials with microseeds to enable the growth of high-quality protein crystals.


2013 ◽  
Vol 740-742 ◽  
pp. 315-318
Author(s):  
Jian Wu Sun ◽  
Satoshi Kamiyama ◽  
Peter J. Wellmann ◽  
Rickard Liljedahl ◽  
R. Yakimova ◽  
...  

High quality bulk-like 3C-SiC were grown on on-axis (0001) 6H-SiC substrate by sublimation epitaxy. The microwave photoconductivity decay mapping measurements revealed that this material shows considerable long carrier lifetimes varied from 3.519 to 7.834 μs under the injection level of 3.5×1012 cm-2, which are comparable with the best carrier lifetimes in 4H-SiC layers. The mapping of high resolution x-ray diffraction obtained from the same region shows that smaller carrier lifetimes seem to correspond to the larger FWHM values and vice versa. This shows that long carrier lifetime obtained in 3C-SiC is due to the improvement of the crystal quality.


1988 ◽  
Vol 116 ◽  
Author(s):  
K. Uchida ◽  
Y. Kohama ◽  
M. Tajima ◽  
T. Soga ◽  
T. Jimbo ◽  
...  

AbstractGaP crystals are grown on Si substrates by MOCVD. Double crystal X-ray diffraction indicates that the crystal quality of GaP layers greatly improves when AsH3 is supplied before growth. The FWHM of (400) diffraction peak of the GaP layer decreases as the thickness increases and the best FWHM of 112.5 arcs is obtained at a thickness of 5 μm. The GaP/Si interface is characterized using secondary ion mass spectroscopy (SIMS) to demonstrate the effect of AsH3.


Sign in / Sign up

Export Citation Format

Share Document