Toxoplasma gondii adenosine kinase: expression, purification, characterization, crystallization and preliminary crystallographic analysis

2000 ◽  
Vol 56 (1) ◽  
pp. 76-78 ◽  
Author(s):  
Rosario Recacha ◽  
Alexander Talalaev ◽  
Lawrence J. DeLucas ◽  
Debasish Chattopadhyay

The obligate intracellular protozoan parasite Toxoplasma gondii depends on the purine-salvage pathway for its purine supply. Unlike its mammalian hosts, T. gondii salvages purine precursors predominantly via adenosine kinase, the enzyme that phosphorylates adenosine to adenosine monophosphate (AMP). The cDNA encoding T. gondii adenosine kinase was subcloned and expressed in Escherichia coli. The recombinant protein was active in an in vitro enzyme assay over a broad pH range. It required a divalent cation for activity. The enzyme was inactivated by the addition of 1 µM mercuric chloride. The inactivation could be reversed by a reducing agent. The active recombinant protein was crystallized using sodium sulfate as precipitant at pH 8.0. The crystals diffract to 1.8 Å and belong to the monoclinic space group P21, with unit-cell parameters a = 47.5, b = 68.9, c = 57.0 Å, β = 100.3°. The calculated Vm based on one molecule per asymmetric unit is 2.38 Å3 Da−1.

1978 ◽  
Vol 33 (1) ◽  
pp. 235-253 ◽  
Author(s):  
J.S. Hyams ◽  
G.G. Borisy

The control of flagellar activity in the biflagellate green alga, Chlamydomonas reinhardtii was investigated by the in vitro reactivation of the isolated flagellar apparatus (the 2 flagella attached to their respective basal bodies plus accessory structures). The waveform and beat frequency of the isolated apparatus in the presence of 1 mM adenosine triphophate (ATP) were comparable to those recorded for living cells. Equimolar concentrations of adenosine diphosphate (ADP) could be substituted for ATP with little change in beat frequency and no apparent change in waveform, suggesting that the latter is converted to ATP by axonemal adenylate kinase. No reactivation occurred in adenosine monophosphate (AMP). But frequencies in cytidine, guanosine and uridine triphosphates (CTP, GTP and UTP) were approximately 10% that obtained in ATP. Reactivation was optimal over a broad pH range between pH 6.4 and pH 8.9 in both APT and ADP. Isolated flagellar apparatus could be induced to change from forward to reverse motion in vitro by manipulation of exogenous calcium ions. The 2 types of motion were directly comparable to recorded responses of living cells. Forward swimming occurred at levels of calcium below 10(−6)M, the isolated apparatus changing to backward motion above this level. Motility was inhibited at concentrations above 10(−3)M. The threshold for reversal of motion by calcium was lowered to 10(−7)M when the flagellar membranes were solubilized with detergent, indicating that the flagellar membranes are involved in the regulaion of the level of calcium within the axoneme. The reversal of motion by calcium was itself freely reversible. The relationship of these observations to the known tactic responses of Chlamydomonas is discussed.


Author(s):  
Inês B. Trindade ◽  
Bruno M. Fonseca ◽  
Pedro M. Matias ◽  
Ricardo O. Louro ◽  
Elin Moe

Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacteriumShewanella frigidimarinaNCIMB 400, the gene tagged as SFRI_RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space groupP21, with unit-cell parametersa= 48.04,b= 78.31,c= 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.


Author(s):  
Santhosh Gatreddi ◽  
Sayanna Are ◽  
Insaf Ahmed Qureshi

Leishmaniais an auxotrophic protozoan parasite which acquires D-ribose by transporting it from the host cell and also by the hydrolysis of nucleosides. The enzyme ribokinase (RK) catalyzes the first step of ribose metabolism by phosphorylating D-ribose using ATP to produce D-ribose-5-phosphate. To understand its structure and function, the gene encoding RK fromL. donovaniwas cloned, expressed and purified using affinity and size-exclusion chromatography. Circular-dichroism spectroscopy of the purified protein showed comparatively more α-helix in the secondary-structure content, and thermal unfolding revealed theTmto be 317.2 K. Kinetic parameters were obtained by functional characterization ofL. donovaniRK, and theKmvalues for ribose and ATP were found to be 296 ± 36 and 116 ± 9.0 µM, respectively. Crystals obtained by the hanging-drop vapour-diffusion method diffracted to 1.95 Å resolution and belonged to the hexagonal space groupP61, with unit-cell parametersa=b= 100.25,c= 126.77 Å. Analysis of the crystal content indicated the presence of two protomers in the asymmetric unit, with a Matthews coefficient (VM) of 2.45 Å3 Da−1and 49.8% solvent content. Further study revealed that human counterpart of this protein could be used as a template to determine the first three-dimensional structure of the RK from trypanosomatid parasites.


1997 ◽  
Vol 41 (10) ◽  
pp. 2137-2140 ◽  
Author(s):  
F G Araujo ◽  
A A Khan ◽  
T L Slifer ◽  
A Bryskier ◽  
J S Remington

Ketolides are a new class of macrolide antibiotics that have been shown to be active against a variety of bacteria including macrolide-resistant bacteria and mycobacteria. We examined two ketolides, HMR 3647 and HMR 3004, for their in vitro and in vivo activities against the protozoan parasite Toxoplasma gondii. In vitro, both ketolides at concentrations as low as 0.05 microg/ml markedly inhibited replication of tachyzoites of the RH strain within human foreskin fibroblasts. HMR 3004 demonstrated some toxicity for host cells after they were exposed to 5 microg of the drug per ml for 72 h. In contrast, HMR 3647 did not show any significant toxicity even at concentrations as high as 25 microg/ml. In vivo, both ketolides provided remarkable protection against death in mice lethally infected intraperitoneally with tachyzoites of the RH strain or orally with tissue cysts of the C56 strain of T. gondii. A dosage of 100 mg of HMR 3647 per kg of body weight per day administered for 10 days protected 50% of mice infected with tachyzoites. The same dosage of HMR 3004 protected 100% of the mice. In mice infected with cysts, a dosage of 30 mg of HMR 3647 per kg per day protected 100% of the mice, whereas a dosage of 40 mg of HMR 3004 per kg per day protected 75% of the mice. These results demonstrate that HMR 3647 and HMR 3004 possess excellent activities against two different strains of T. gondii and may be useful for the treatment of toxoplasmosis in humans.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Jixu Li ◽  
Huanping Guo ◽  
Eloiza May Galon ◽  
Yang Gao ◽  
Seung-Hun Lee ◽  
...  

ABSTRACT Toxoplasma gondii is an obligate intracellular protozoan parasite and a successful parasitic pathogen in diverse organisms and host cell types. Hydroxylamine (HYD) and carboxymethoxylamine (CAR) have been reported as inhibitors of aspartate aminotransferases (AATs) and interfere with the proliferation in Plasmodium falciparum. Therefore, AATs are suggested as drug targets against Plasmodium. The T. gondii genome encodes only one predicted AAT in both T. gondii type I strain RH and type II strain PLK. However, the effects of HYD and CAR, as well as their relationship with AAT, on T. gondii remain unclear. In this study, we found that HYD and CAR impaired the lytic cycle of T. gondii in vitro, including the inhibition of invasion or reinvasion, intracellular replication, and egress. Importantly, HYD and CAR could control acute toxoplasmosis in vivo. Further studies showed that HYD and CAR could inhibit the transamination activity of rTgAAT in vitro. However, our results confirmed that deficiency of AAT in both RH and PLK did not reduce the virulence in mice, although the growth ability of the parasites was affected in vitro. HYD and CAR could still inhibit the growth of AAT-deficient parasites. These findings indicated that HYD and CAR inhibition of T. gondii growth and control of toxoplasmosis can occur in an AAT-independent pathway. Overall, further studies focusing on the elucidation of the mechanism of inhibition are warranted. Our study hints at new substrates of HYD and CAR as potential drug targets to inhibit T. gondii growth.


2014 ◽  
Vol 70 (10) ◽  
pp. 1424-1427 ◽  
Author(s):  
José A. Brito ◽  
André Gutierres ◽  
Kevin Denkmann ◽  
Christiane Dahl ◽  
Margarida Archer

The ability to perform the very simple oxidation of two molecules of thiosulfate to tetrathionate is widespread among prokaryotes. Despite the prevalent occurrence of tetrathionate formation and its well documented significance within the sulfur cycle, little is known about the enzymes that catalyze the oxidative condensation of two thiosulfate anions. To fill this gap, the thiosulfate dehydrogenase (TsdA) enzyme from the purple sulfur bacteriumAllochromatium vinosumwas recombinantly expressed inEscherichia coli, purified and crystallized, and a crystallographic data set was collected. The crystals belonged to the monoclinic space groupC2, with unit-cell parametersa= 79.2,b= 69.9,c= 57.9 Å, β = 129.3°, contained one monomer per asymmetric unit and diffracted to a resolution of 1.98 Å.


Author(s):  
Xing Zhou ◽  
Yue Tao ◽  
Minhao Wu ◽  
Dandan Zhang ◽  
Jianye Zang

NO66 is a JmjC domain-containing histone demethylase with specificity towards histone H3 methylated on both Lys4 and Lys36in vitroandin vivo. A fragment of NO66 lacking the N-terminal 167 amino-acid residues was overexpressed inEscherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to a resolution of 2.29 Å. NO66 crystallized in space groupP31orP32, with unit-cell parametersa= 89.35,b = 89.35,c= 304.86 Å, α = β = 90, γ = 120°, and the crystal is likely to contain four molecules in the asymmetric unit.


Author(s):  
Shutao Xie

Uba5 is the smallest ubiquitin-like molecule-activating enzyme and contains an adenylation domain and a C-terminal region. This enzyme only exists in multicellular organisms. The mechanism through which the enzyme recognizes and activates ubiquitin-fold modifier 1 (Ufm1) remains unknown. In this study, Uba5 adenylation domains with different C-terminal region lengths were cloned, expressed and purified. The results of anin vitrotruncation assay suggest that Uba5 residues 57–363 comprise the minimal fragment required for the high-efficiency activation of Ufm1. Crystallization of Uba5 residues 57–363 was performed at 277 K using PEG 3350 as the precipitant, and crystals optimized by microseeding diffracted to 2.95 Å resolution, with unit-cell parametersa=b= 97.66,c= 144.83 Å, α = β = 90, γ = 120°. There is one molecule in the asymmetric unit; the Matthews coefficient and the solvent content were calculated to be 2.93 Å3 Da−1and 58.1%, respectively.


1994 ◽  
Vol 298 (2) ◽  
pp. 289-294 ◽  
Author(s):  
G Maga ◽  
S Spadari ◽  
G E Wright ◽  
F Focher

From oocysts of the protozoan parasite Eimeria tenella, responsible for avian coccidiosis, we have partially purified and characterized a novel enzymic activity which specifically phosphorylates guanosine to GMP. The enzyme is able to use several phosphate donors, in the order: acetyl phosphate (Ac-P) > ATP > UTP > CTP > phosphoribosyl pyrophosphate (PRPP) > dUTP > or = dATP. The low specificity of this enzyme for the phosphate donor suggested that it be named guanosine phosphotransferase (GPTase). This enzyme is biochemically distinct from the previously described adenosine kinase (AK) and hypoxanthine/xanthine/guanine phosphoribosyltransferase (HXGPRTase), and may enable the parasite to synthesize guanine nucleotides under conditions of imbalance between adenine and guanine nucleotides. Because of its possible role in the purine salvage pathways, we have studied the effect of several guanine and guanosine analogues, recently synthesized in our laboratory, on the activity of GPTase in vitro. GPTase is specifically inhibited in the micromolar range by several substituted N2-phenylguanine bases. These results indicate that, as previously found for AK and HXGPRTase, GPTase could be a potential target for antiparasitic chemotherapy.


Author(s):  
Kavitha Marapakala ◽  
A. Abdul Ajees ◽  
Jie Qin ◽  
Banumathi Sankaran ◽  
Barry P. Rosen

Arsenic is the most ubiquitous environmental toxin and carcinogen and consequently ranks first on the Environmental Protection Agency's Superfund Priority List of Hazardous Substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. A common biotransformation is methylation to monomethylated, dimethylated and trimethylated species. Methylation is catalyzed by the ArsM (or AS3MT) arsenic(III)S-adenosylmethionine methyltransferase, an enzyme (EC 2.1.1.137) that is found in members of every kingdom from bacteria to humans. ArsM from the thermophilic algaCyanidioschyzonsp. 5508 was expressed, purified and crystallized. Crystals were obtained by the hanging-drop vapor-diffusion method. The crystals belonged to the monoclinic space groupC2, with unit-cell parametersa= 84.85,b= 46.89,c= 100.35 Å, β = 114.25° and one molecule in the asymmetric unit. Diffraction data were collected at the Advanced Light Source and were processed to a resolution of 1.76 Å.


Sign in / Sign up

Export Citation Format

Share Document