A scanning Kelvin probe for synchrotron investigations: thein situdetection of radiation-induced potential changes

2011 ◽  
Vol 19 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Bekir Salgin ◽  
Dirk Vogel ◽  
Diego Pontoni ◽  
Heiko Schröder ◽  
Bernd Schönberger ◽  
...  

A wide range of high-performance X-ray surface/interface characterization techniques are implemented nowadays at every synchrotron radiation source. However, these techniques are not always `non-destructive' because possible beam-induced electronic or structural changes may occur during X-ray irradiation. As these changes may be at least partially reversible, anin situtechnique is required for assessing their extent. Here the integration of a scanning Kelvin probe (SKP) set-up with a synchrotron hard X-ray interface scattering instrument for thein situdetection of work function variations resulting from X-ray irradiation is reported. First results, obtained on bare sapphire and sapphire covered by a room-temperature ionic liquid, are presented. In both cases a potential change was detected, which decayed and vanished after switching off the X-ray beam. This demonstrates the usefulness of a SKP forin situmonitoring of surface/interface potentials during X-ray materials characterization experiments.

2017 ◽  
Vol 24 (1) ◽  
pp. 240-247 ◽  
Author(s):  
M. Álvarez-Murga ◽  
J. P. Perrillat ◽  
Y. Le Godec ◽  
F. Bergame ◽  
J. Philippe ◽  
...  

X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris–Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure–temperature–stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.


1992 ◽  
Vol 293 ◽  
Author(s):  
C. Lampe-Önnerud ◽  
T. Gustafsson ◽  
J.O. Thomas

AbstractA fast in situ X-ray powder diffraction set-up working in transmission mode is used to explore the structural changes occurring on Li+ insertion into the active V6O13 component of the cathode in a thin-film < Li I polymer electrolyte | V6O13 > battery. It is confirmed that the V6O13 is indeed converted reversibly into three discrete phases, LixV6O13 for x = 1, 4 and 8, as the fully charged cell (ca. 3.OV) is discharged to 1.8V. The effect on the insertion process of repeated cycling with different currents has been studied. Cell collapse was induced after ca. 35 cycles for 0.2 mA/cm2. This was not reflected, however, in any significant change in the diffraction pattern from the battery. Moreover, the battery returned to normal functioning after lying on open circuit for 7 days. A gradual loss of reflection intensity is observed, but no particle line-broadening. The implications of these results are discussed as they relate to the nature of the solid-state insertion process of Li+ into V6O13.


2014 ◽  
Vol 70 (a1) ◽  
pp. C94-C94
Author(s):  
Pawel Kuczera ◽  
Walter Steurer

The structure of d(ecagonal)-Al-Cu-Rh has been studied as a function of temperature by in-situ single-crystal X-ray diffraction in order to contribute to the discussion on energy or entropy stabilization of quasicrystals (QC) [1]. The experiments were performed at 293 K, 1223 K, 1153 K, 1083 K, and 1013 K. A common subset of 1460 unique reflections was used for the comparative structure refinements at each temperature. The results obtained for the HT structure refinements of d-Al-Cu-Rh QC seem to contradict a pure phasonic-entropy-based stabilization mechanism [2] for this QC. The trends observed for the ln func(I(T1 )/I(T2 )) vs.|k⊥ |^2 plots indicate that the best on-average quasiperiodic order exists between 1083 K and 1153 K, however, what that actually means is unclear. It could indicate towards a small phasonic contribution to entropy, but such contribution is not seen in the structure refinements. A rough estimation of the hypothetic phason instability temperature shows that it would be kinetically inaccessible and thus the phase transition to a 12 Å low T structure (at ~800 K) is most likely not phason-driven. Except for the obvious increase in the amplitude of the thermal motion, no other significant structural changes, in particular no sources of additional phason-related configurational entropy, were found. All structures are refined to very similar R-values, which proves that the quality of the refinement at each temperature is the same. This suggests, that concerning the stability factors, some QCs could be similar to other HT complex intermetallic phases. The experimental results clearly show that at least the ~4 Å structure of d-Al-Cu-Rh is a HT phase therefore entropy plays an important role in its stabilisation mechanism lowering the free energy. However, the main source of this entropy is probably not related to phason flips, but rather to lattice vibrations, occupational disorder unrelated to phason flips like split positions along the periodic axis.


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2019 ◽  
Vol 11 ◽  
Author(s):  
A. G. Karydas ◽  
T. Pantazis ◽  
C. Doumas ◽  
A. Vlachopoulos ◽  
P. Nomikos ◽  
...  

In-situ X-ray fluorescence analysis (XRF) of ancient artifacts from the excavation area was performed using a novel X-ray instrumentation, composed of a portable silicon PIN thermoelectrically cooled X-ray detector, a miniature X-ray source, and portable data acquisition devices. The main objective of the analyses in Akrotiri was to explore the potential of the technique to provide answers to a wide range of archaeometric questions regarding the bulk composition of metal alloys, especially of gold, the characterization of corrosion products in bronze artifacts, identification of inorganic elements which are fingerprints of the minerals used in wall-painting pigments, and of the painting materials and techniques used for the decoration of clay vase surfaces. Among the analysed artifacts are a unique gold ibex, a bronze dagger and blade, various pigments from the wall paintings of room 3 in Xeste 3, decoration pigments from rosettes of faience, a bichrome jug, and other clay vases. The results of the in-situ XRF survey, primarily those of the bulk composition and soldering technology of the gold ibex, are discussed and compared with literature.


2020 ◽  
Author(s):  
Stephen Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

We report on the results of a thorough <i>in situ</i> synchrotron powder X-ray diffraction study of the crystallisation in aqueous medium of two recently discovered perfluorinated Ce(IV)-based metal-organic frameworks (MOFs), analogues of the already well investigated Zr(IV)-based UiO-66 and MIL-140A, namely, F4_UiO-66(Ce) and F4_MIL-140A(Ce). The two MOFs were originally obtained in pure form in similar conditions, using ammonium cerium nitrate and tetrafluoroterephthalic acid as building blocks, and small variations of the reaction parameters were found to yield mixed phases. Here, we investigate the crystallisation of these compounds <i>in situ</i> in a wide range of conditions, varying parameters such as temperature, amount of the protonation modulator nitric acid (HNO<sub>3</sub>) and amount of the coordination modulator acetic acid (AcOH). When only HNO<sub>3</sub> is present in the reaction environment, F4_MIL-140A(Ce) is obtained as a pure phase. Heating preferentially accelerates nucleation, which becomes rate determining below 57 °C, whereas the modulator influences nucleation and crystal growth to a similar extent. Upon addition of AcOH to the system, alongside HNO<sub>3</sub>, mixed-phased products, consisting of F4_MIL-140A(Ce) and F4_UiO-66(Ce), are obtained. In these conditions, F4_UiO-66(Ce) is always formed faster and no interconversion between the two phases occurs. In the case of F4_UiO-66(Ce), crystal growth is always the rate determining step. An increase in the amount of HNO<sub>3</sub> slows down both nucleation and growth rates for F4_MIL-140A(Ce), whereas nucleation is mainly affected for F4_UiO-66(Ce). In addition, a higher amount HNO<sub>3</sub> favours the formation of F4_MIL-140A(Ce). Similarly, increasing the amount of AcOH leads to slowing down of the nucleation and growth rate, but favours the formation of F4_UiO-66(Ce). The pure F4_UiO-66(Ce) phase could also be obtained when using larger amounts of AcOH in the presence of minimal HNO<sub>3</sub>. Based on these <i>in situ</i> results, a new optimised route to achieving a pure, high quality F4_MIL-140A(Ce) phase in mild conditions (60 °C, 1 h) is also identified.


2020 ◽  
Vol 22 (34) ◽  
pp. 18964-18975
Author(s):  
Dorota Matras ◽  
Antonis Vamvakeros ◽  
Simon D. M. Jacques ◽  
Vesna Middelkoop ◽  
Gavin Vaughan ◽  
...  

In situ XRD-CT and post-reaction SEM/EDX were used to study the solid-state chemistry and structural changes of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane reactors during the oxidative coupling of methane reaction.


Sign in / Sign up

Export Citation Format

Share Document