Growth and annealing kinetics of α-sexithiophene and fullerene C60mixed films

2016 ◽  
Vol 49 (4) ◽  
pp. 1266-1275 ◽  
Author(s):  
Christopher Lorch ◽  
Katharina Broch ◽  
Valentina Belova ◽  
Giuliano Duva ◽  
Alexander Hinderhofer ◽  
...  

Thin films of α-sexithiophene (6T) and C60mixtures deposited on nSiO substrates at 303 and 373 K were investigated in real time andin situduring the film growth using X-ray diffraction. The mixtures are observed to contain the well known 6T low-temperature crystal phase and the β phase, which usually coexist in pure 6T films. The addition of C60modifies the structure to almost purely β-phase-dominated films if the substrate is at 303 K. In contrast, at 373 K the low-temperature crystal phase of 6T dominates the film growth of the mixtures. Post-growth annealing experiments up to 373 K on equimolar mixtures and pure 6T films were also performed and followed in real time with X-ray diffraction. Annealing of pure 6T films results in a strong increase of film ordering, whereas annealing of equimolar 6T:C60mixed films does not induce any significant changes in the film structure. These results lend further support to theories about the important influence of C60on the growth behaviour and structure formation process of 6T in mixtures of the two materials.

2012 ◽  
Vol 198-199 ◽  
pp. 99-102
Author(s):  
Qing Gang Kong ◽  
Hai Yan Qian

Magnesium nitrate was used as additive for synthesis of Mg(OH)2 (MH) nanoparticles at low temperature (70°C). Mg(OH)2 nanoparticles have platelet-like structure and approximately 40-60nm in thicknesses. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to characterize the crystal phase. The supersaturation degree of solution effects the size and morphology of MH nanoparticles.


Author(s):  
G. Eres ◽  
J.Z. Tischler ◽  
C.M. Rouleau ◽  
B.C. Larson ◽  
H.M. Christen ◽  
...  

1995 ◽  
Author(s):  
Alexander M. Baranov ◽  
V. V. Sleptsov ◽  
Sergei A. Tereshin ◽  
Igor F. Mikhailov ◽  
V. I. Pinegin

2019 ◽  
Author(s):  
Minoru Maeda ◽  
Dipak Patel, Dr. ◽  
Hiroaki Kumakura, Dr. ◽  
Gen Nishijima, Dr. ◽  
Akiyoshi Matsumoto, Dr. ◽  
...  

1961 ◽  
Vol 5 ◽  
pp. 276-284
Author(s):  
E. L. Moore ◽  
J. S. Metcalf

AbstractHigh-temperature X-ray diffraction techniques were employed to study the condensation reactions which occur when sodium orthophosphates are heated to 380°C. Crystalline Na4P2O7 and an amorphous phase were formed first from an equimolar mixture of Na2HPO4·NaH2PO4 and Na2HPO4 at temperatures above 150°C. Further heating resulted in the formation of Na5P3O10-I (high-temperature form) at the expense of the crystalline Na4P4O7 and amorphous phase. Crystalline Na5P3O10-II (low-temperature form) appears after Na5P3O10-I.Conditions which affect the yield of crystalline Na4P2O7 and amorphous phase as intermediates and their effect on the yield of Na5P3O10 are also presented.


1988 ◽  
Vol 133 ◽  
Author(s):  
K. S. Kumar ◽  
S. K. Mannan

ABSTRACTThe mechanical alloying behavior of elemental powders in the Nb-Si, Ta-Si, and Nb-Ta-Si systems was examined via X-ray diffraction. The line compounds NbSi2 and TaSi2 form as crystalline compounds rather than amorphous products, but Nb5Si3 and Ta5Si3, although chemically analogous, respond very differently to mechanical milling. The Ta5Si3 composition goes directly from elemental powders to an amorphous product, whereas Nb5Si3 forms as a crystalline compound. The Nb5Si3 compound consists of both the tetragonal room-temperature α phase (c/a = 1.8) and the tetragonal high-temperature β phase (c/a = 0.5). Substituting increasing amounts of Ta for Nb in Nb5Si3 initially stabilizes the α-Nb5Si3 structure preferentially, and subsequently inhibits the formation of a crystalline compound.


2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.


Sign in / Sign up

Export Citation Format

Share Document