Characterization ofAIIIBVsuperlattices by means of synchrotron diffraction topography and high-resolution X-ray diffraction

2017 ◽  
Vol 50 (4) ◽  
pp. 1192-1199
Author(s):  
Wojciech Wierzchowski ◽  
Krzysztof Wieteska ◽  
Jarosław Gaca ◽  
Marek Wójcik ◽  
Małgorzata Możdżonek ◽  
...  

New possibilities are presented for the characterization ofAIIIBVmixed superlattice compounds by the complementary use of synchrotron diffraction topography and rocking curves. In particular, using a synchrotron white beam and the section diffraction pattern of a 5 µm slit taken at a 10 cm film-to-crystal distance, it was possible to reproduce a set of stripes corresponding to interference fringes. These are analogous to the interference maxima revealed in high-resolution rocking curves, but are created by the changes in orientation of the planes inclined to the surface which are induced by unrelaxed strain. The section diffraction topographic method enabled examination of the sample homogeneity along the narrow intersecting beam. This was important in the case of the present sample containing a twin lamella in the InP substrate wafer. Both the section and projection Bragg case topographic methods enabled the crystallographic identification of the twin lamella. Another characteristic feature indicated in the section topography was the bending of the stripes corresponding to the superlattice peaks close to the boundaries of the twin lamella. The most probable interpretation of this phenomenon is an increase in the thickness of the deposited layers close to the lamella, together with possible changes in the chemical composition, leading to a decrease in the mean lattice parameter in the superlattice.

2000 ◽  
Vol 5 (S1) ◽  
pp. 412-424
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


2007 ◽  
Vol 539-543 ◽  
pp. 2353-2358 ◽  
Author(s):  
Ulrich Lienert ◽  
Jonathan Almer ◽  
Bo Jakobsen ◽  
Wolfgang Pantleon ◽  
Henning Friis Poulsen ◽  
...  

The implementation of 3-Dimensional X-Ray Diffraction (3DXRD) Microscopy at the Advanced Photon Source is described. The technique enables the non-destructive structural characterization of polycrystalline bulk materials and is therefore suitable for in situ studies during thermo-mechanical processing. High energy synchrotron radiation and area detectors are employed. First, a forward modeling approach for the reconstruction of grain boundaries from high resolution diffraction images is described. Second, a high resolution reciprocal space mapping technique of individual grains is presented.


2015 ◽  
Vol 48 (2) ◽  
pp. 528-532 ◽  
Author(s):  
Peter Zaumseil

The occurrence of the basis-forbidden Si 200 and Si 222 reflections in specular X-ray diffraction ω–2Θ scans is investigated in detail as a function of the in-plane sample orientation Φ. This is done for two different diffractometer types with low and high angular divergence perpendicular to the diffraction plane. It is shown that the reflections appear for well defined conditions as a result of multiple diffraction, and not only do the obtained peaks vary in intensity but additional features like shoulders or even subpeaks may occur within a 2Θ range of about ±2.5°. This has important consequences for the detection and verification of layer peaks in the corresponding angular range.


2003 ◽  
Vol 799 ◽  
Author(s):  
M. H. Kane ◽  
R. Varatharajan ◽  
Z. C. Feng ◽  
S. Kandoor ◽  
J. Nause ◽  
...  

ABSTRACTIn this work, we report on the material properties of ZnO doped with Mn, Co, and Fe grown by a modified melt growth technique. X-ray diffraction measurements show that transition metals can be incorporated on Zn sites; an increase in the lattice parameter is apparent with increasing doping level. UV-visible transmission and reflectance measurements have also been performed. Absorption bands in the visible regime are distinctive to the individual transition metal dopants. A noticeable shift in the optical band edge has been observed from these Mn/Co/Fe-doped ZnO crystals in comparison with the undoped material. ZnO may also provide a suitable platform for the incorporation of transition metal elements through high temperature near equilibrium growth processes; however, further work is required in order to employ these materials for spintronic applications.


1997 ◽  
pp. 439-448 ◽  
Author(s):  
A. Sanz-Hervás ◽  
C. Villar ◽  
M. Aguilar ◽  
A. Sacedón ◽  
J. L. Sánchez-Rojas ◽  
...  

1999 ◽  
Vol 595 ◽  
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

AbstractWe report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document