X-ray characterization of contact holes for block copolymer lithography

2019 ◽  
Vol 52 (1) ◽  
pp. 106-114
Author(s):  
Daniel F. Sunday ◽  
Florian Delachat ◽  
Ahmed Gharbi ◽  
Guillaume Freychet ◽  
Christopher D. Liman ◽  
...  

The directed self-assembly (DSA) of block copolymers (BCPs) is a promising low-cost approach to patterning structures with critical dimensions (CDs) which are smaller than can be achieved by traditional photolithography. The CD of contact holes can be reduced by assembling a cylindrical BCP inside a patterned template and utilizing the native size of the cylinder to dictate the reduced dimensions of the hole. This is a particularly promising application of the DSA technique, but in order for this technology to be realized there is a need for three-dimensional metrology of the internal structure of the patterned BCP in order to understand how template properties and processing conditions impact BCP assembly. This is a particularly challenging problem for traditional metrologies owing to the three-dimensional nature of the structure and the buried features. By utilizing small-angle X-ray scattering and changing the angle between the incident beam and sample we can reconstruct the three-dimensional shape profile of the empty template and the residual polymer after self-assembly and removal of one of the phases. A two-dimensional square grid pattern of the holes results in scattering in both in-plane directions, which is simplified by converting to a radial geometry. The shape is then determined by simulating the scattering from a model and iterating that model until the simulated and experimental scattering profiles show a satisfactory match. Samples with two different processing conditions are characterized in order to demonstrate the ability of the technique to evaluate critical features such as residual layer thickness and sidewall height. It was found that the samples had residual layer thicknesses of 15.9 ± 3.2 nm and 4.5 ± 2.2 nm, which were clearly distinguished between the two different DSA processes and in good agreement with focused ion beam scanning transmission electron microscopy (FIBSTEM) observations. The advantage of the X-ray measurements is that FIBSTEM characterizes around ten holes, while there are of the order of 800 000 holes illuminated by the X-ray beam.

MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


RSC Advances ◽  
2018 ◽  
Vol 8 (18) ◽  
pp. 9963-9969 ◽  
Author(s):  
Zhe Wang ◽  
Min Xue ◽  
Herong Zhang ◽  
Zihui Meng ◽  
Kenneth J. Shea ◽  
...  

A simple and low-cost humidity sensor based on self-assembled three dimensional nanohydrogel colloidal array was prepared for humidity sensing.


Author(s):  
David Blow

In Chapter 4 many two-dimensional examples were shown, in which a diffraction pattern represents the Fourier transform of the scattering object. When a diffracting object is three-dimensional, a new effect arises. In diffraction by a repetitive object, rays are scattered in many directions. Each unit of the lattice scatters, but a diffracted beam arises only if the scattered rays from each unit are all in phase. Otherwise the scattering from one unit is cancelled out by another. In two dimensions, there is always a direction where the scattered rays are in phase for any order of diffraction (just as shown for a one-dimensional scatterer in Fig. 4.1). In three dimensions, it is only possible for all the points of a lattice to scatter in phase if the crystal is correctly oriented in the incident beam. The amplitudes and phases of all the scattered beams from a three-dimensional crystal still provide the Fourier transform of the three-dimensional structure. But when a crystal is at a particular angular orientation to the X-ray beam, the scattering of a monochromatic beam provides only a tiny sample of the total Fourier transform of its structure. In the next section, we are going to find what is needed to allow a diffracted beam to be generated. We shall follow a treatment invented by Lawrence Bragg in 1913. Max von Laue, who discovered X-ray diffraction in 1912, used a different scheme of analysis; and Paul Ewald introduced a new way of looking at it in 1921. These three methods are referred to as the Laue equations, Bragg’s law and the Ewald construction, and they give identical results. All three are described in many crystallographic text books. Bragg’s method is straightforward, understandable, and suffices for present needs. I had heard J.J. Thomson lecture about…X-rays as very short pulses of radiation. I worked out that such pulses…should be reflected at any angle of incidence by the sheets of atoms in the crystal as if these sheets were mirrors.…It remained to explain why certain of the atomic mirrors in the zinc blende [ZnS] crystal reflected more powerfully than others.


2018 ◽  
Vol 74 (8) ◽  
pp. 889-893
Author(s):  
Qian-Kun Zhou ◽  
Lin Wang ◽  
Dong Liu

As a class of multifunctional materials, crystalline supramolecular complexes have attracted much attention because of their unique architectures, intriguing topologies and potential applications. In this article, a new supramolecular compound, namely catena-poly[4,4′-(buta-1,3-diene-1,4-diyl)dipyridin-1-ium [(μ4-benzene-1,2,4,5-tetracarboxylato-κ6 O 1,O 1′:O 2:O 4,O 4′:O 5)cadmium(II)]], {(C14H14N2)[Cd(C10H2O8)]} n or {(1,4-H2bpbd)[Cd(1,2,4,5-btc)]} n , has been prepared by the self-assembly of Cd(NO3)2·4H2O, benzene-1,2,4,5-tetracarboxylic acid (1,2,4,5-H4btc) and 1,4-bis(pyridin-4-yl)buta-1,3-diene (1,4-bpbd) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. Each CdII centre is coordinated by six O atoms from four different (1,2,4,5-btc)4− tetraanions. Each CdII cation, located on a site of twofold symmetry, binds to four carboxylate groups belonging to four separate (1,2,4,5-btc)4− ligands. Each (1,2,4,5-btc)4− anion, situated on a position of \overline{1} symmetry, binds to four crystallographically equivalent CdII centres. Neighbouring CdII cations interconnect bridging (1,2,4,5-btc)4− anions to form a three-dimensional {[Cd(1,2,4,5-btc)]2−} n anionic coordination network with infinite tubular channels. The channels are visible in both the [1\overline{1}0] and the [001] direction. Such a coordination network can be simplified as a (4,4)-connected framework with the point symbol (4284)(4284). To balance the negative charge of the metal–carboxylate coordination network, the cavities of the network are occupied by protonated (1,4-H2bpbd)2+ cations that are located on sites of twofold symmetry. In the crystal, there are strong hydrogen-bonding interactions between the anionic coordination network and the (1,4-H2bpbd)2+ cations. Considering the hydrogen-bonding interactions, the structure can be further regarded as a three-dimensional (4,6)-connected supramolecular architecture with the point symbol (4264)(42687·84). The thermal stability and photoluminescence properties of the title compound have been investigated.


Collagen is the principal organic matrix in bone. The triple helical region of the molecule is 1014 amino acids long. In fibrils these molecules are staggered axially by integers of 234 residues or 68 nm ( D ). This axial shift occurs by self-assembly and can be understood in terms of a periodicity in the occurrence of apolar and polar residues in the amino acid sequence. Because the molecular length L = 4.47 D , there are gaps 1.5 x 36.5 nm regularly arrayed throughout the fibrils. The three-dimensional molecular arrangement is a quasi-hexagonal lattice with three distinct values for the principal interplanar spacings. Analysis of the intensity distribution in the medium-angle X -ray diffraction patterns from tendons has produced the following picture of the molecular arrangement in fibrils (Fraser et al . 1983). The molecular helices have a coherent length of 32 nm and are tilted parallel to a specific place within the lattice. A regular azimuthal interaction exists between these helices. This crystalline region could be the overlap region with a non-crystalline gap region. However, the gap is still regular axially and the molecular helices retain their structure; their lateral packing is perturbed although they retain a ‘gap’. Neutron and X -ray scattering experiments have shown that calcium hydroxyapatite crystals occur in the gap and are nucleated at a specific though unknown location within the gap. The c -axis of the apatite crystals is parallel to the fibril axis and its length c = 0.688 nm is close to the axial periodicity in a protein with an extended β-conformation. If the telopeptides at the end of a collagen molecule do have this conformation they would either have a highly heterogeneous conformation or exist in a folded manner because the overall length of the telopeptides is shorter than a regular collagen repeat of 0.029 nm would allow.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3952 ◽  
Author(s):  
* ◽  
*

Three Dimensional (3D) models are widely used in clinical applications, geosciences, cultural heritage preservation, and engineering; this, together with new emerging needs such as building information modeling (BIM) develop new data capture techniques and devices with a low cost and reduced learning curve that allow for non-specialized users to employ it. This paper presents a simple, self-assembly device for 3D point clouds data capture with an estimated base price under €2500; furthermore, a workflow for the calculations is described that includes a Visual SLAM-photogrammetric threaded algorithm that has been implemented in C++. Another purpose of this work is to validate the proposed system in BIM working environments. To achieve it, in outdoor tests, several 3D point clouds were obtained and the coordinates of 40 points were obtained by means of this device, with data capture distances ranging between 5 to 20 m. Subsequently, those were compared to the coordinates of the same targets measured by a total station. The Euclidean average distance errors and root mean square errors (RMSEs) ranging between 12–46 mm and 8–33 mm respectively, depending on the data capture distance (5–20 m). Furthermore, the proposed system was compared with a commonly used photogrammetric methodology based on Agisoft Metashape software. The results obtained demonstrate that the proposed system satisfies (in each case) the tolerances of ‘level 1’ (51 mm) and ‘level 2’ (13 mm) for point cloud acquisition in urban design and historic documentation, according to the BIM Guide for 3D Imaging (U.S. General Services).


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 650
Author(s):  
Aile Tamm ◽  
Aivar Tarre ◽  
Valeriy Verchenko ◽  
Helina Seemen ◽  
Raivo Stern

In previous decades, investigation of superconductors was aimed either at finding materials with higher critical temperatures or at discovering nontypical superconducting behavior. Here, we present the cupric (CuO) thin films, which were synthesized by atomic layer deposition by using a metal-organic precursor, copper (II)-bis-(-dimethylamino-2-propoxide), and ozone as an oxidizer. The deposition process was optimized by employing a quartz crystal monitoring, and the contact between the deposited films and planar and three-dimensional SiO2/Si substrates was examined by scanning electron microscopy with a focused ion beam module. Phase and elemental composition were analyzed by X-ray diffraction and X-ray fluorescence. Two-probe electrical resistivity measurements revealed a resistivity drop below the critical temperature of 4 K, which may indicate low-temperature superconductivity of the CuO thin films.


Sign in / Sign up

Export Citation Format

Share Document