scholarly journals Illustrated formalisms for total scattering data: a guide for new practitioners. Corrigendum and addendum

2021 ◽  
Vol 54 (5) ◽  
pp. 1542-1545
Author(s):  
Peter F. Peterson ◽  
David A. Keen

Errors and ambiguities in the article by Peterson, Olds, McDonnell & Page [J. Appl. Cryst. (2021), 54, 317–332] are corrected and clarified, respectively.

Author(s):  
Simon J.L. Billinge ◽  
Sandra H. Skjaervoe ◽  
Maxwell W. Terban ◽  
Songsheng Tao ◽  
Long Yang ◽  
...  

2019 ◽  
Vol 55 (17) ◽  
pp. 2517-2520 ◽  
Author(s):  
Naoto Kitamura ◽  
Yuhei Tanabe ◽  
Naoya Ishida ◽  
Yasushi Idemoto

The atomic structure of a spinel-type MgCo2O4 nanoparticle was investigated by the reverse Monte Carlo modelling using X-ray and neutron total scattering data.


2018 ◽  
Vol 51 (5) ◽  
pp. 1498-1499
Author(s):  
Chenyang Shi

A new software program, xINTERPDF, that analyzes the intermolecular correlations in organic compounds via measured X-ray total scattering data is described.


2020 ◽  
Vol 53 (6) ◽  
pp. 1509-1518
Author(s):  
Yuanpeng Zhang ◽  
Maksim Eremenko ◽  
Victor Krayzman ◽  
Matthew G. Tucker ◽  
Igor Levin

Reported here are the development and application of new capabilities in the RMCProfile software for structural refinements using the reverse Monte Carlo (RMC) method. An algorithm has been implemented to enable the use of arbitrary peak-shape functions in the modeling of Bragg diffraction patterns and instrumental resolution effects on total-scattering data. This capability eliminates the dependence of RMCProfile on preset functions, which are inadequate for data produced by some total-scattering instruments, e.g. NOMAD at the Spallation Neutron Source (SNS) at Oak Ridge, Tennessee, USA. The recently developed procedure for the instrument-resolution correction has been modified to improve its accuracy, which is critical for recovering nanoscale structure. The ability to measure fine details of local and nanoscale structures with high fidelity is required because such features are increasingly exploited in the design of materials with enhanced functional properties. The new methodology has been tested via RMC refinements of large-scale atomic configurations (distances up to 8 nm) for SrTiO3 using neutron total-scattering data collected on the Polaris and NOMAD time-of-flight powder diffractometers at the ISIS facility (Didcot, Oxfordshire, UK) and SNS, respectively. While the Polaris instrument is known to provide the high-quality data needed for RMC analysis, the similar and sound atomic configurations obtained from both instruments confirmed that the NOMAD data are also suitable for RMC refinements over a broad distance range.


2015 ◽  
Vol 30 (S1) ◽  
pp. S65-S69 ◽  
Author(s):  
Giorgia Confalonieri ◽  
Monica Dapiaggi ◽  
Marco Sommariva ◽  
Milen Gateshki ◽  
Andy N. Fitch ◽  
...  

Total scattering data of nanocrystalline gahnite (ZnAl2O4, 2–3 nm) have been collected with three of the most commonly used instruments: (i) ID31 high-resolution diffractometer at the European Synchrotron Radiation Facility (ESRF) (Qmax = 22 Å−1); (ii) ID11 high-energy beamline at the ESRF (Qmax = 26.6 Å−1); and (iii) Empyrean laboratory diffractometer by PANalytical with molybdenum anode X-ray tube (Qmax = 17.1 Å−1). Pair distribution functions (PDFs) for each instrument data-set have been obtained, changing some of the parameters, by PDFgetX3 software, with the aim of testing the software in the treatment of different total scattering data. The material under analysis has been chosen for its nanometric (and possibly disordered) nature, to give rise to a challenge for all the diffractometers involved. None of the latter should have a clear advantage. The PDF and F(Q) functions have been visually compared, and then the three PDF sets have been used for refinements by means of PDFgui suite. All the refinements have been made exactly in the same way for the sake of a fair comparison. Small differences could be observed in the experimental PDFs and the derived results, but none of them seemed to be significant.


2001 ◽  
Vol 34 (6) ◽  
pp. 780-782 ◽  
Author(s):  
Matthew G. Tucker ◽  
Martin T. Dove ◽  
David A. Keen

A new implementation of the programMCGR[Pusztai & McGreevy (1997).Physica B,234–236, 357–358] for the calculation of pair distribution functions from neutron total scattering data using an inverse Monte Carlo algorithm is presented. The new implementation, calledMCGRtof, incorporates the resolution functions for time-of-flight neutron diffractometers, and is suitable for analysis of data from instruments such as GEM at the ISIS spallation neutron source. The effect of including resolution correctly is to increase the magnitude of the pair distribution function at larger distances. The working program is illustrated with total scattering measurements from crystalline AlPO4.


2017 ◽  
Vol 50 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Helen Y. Playford ◽  
Matthew G. Tucker ◽  
Craig L. Bull

Neutron total scattering of disordered crystalline materials provides direct experimental access to the local (short-range) structure. The ways in which this local structure agrees (or disagrees) with the long-range crystal structure can provide important insight into structure–property relationships. High-pressure neutron diffraction using a Paris–Edinburgh (P–E) pressure cell allows experimenters to explore the ways in which materials are affected by pressure, can reveal new synthetic routes to novel functional materials and has important applications in many areas, including geology, engineering and planetary science. However, the combination of these two experimental techniques poses unique challenges for both data collection and analysis. In this paper it is shown that, with only minor modifications to the standard P–E press setup, high-quality total scattering data can be obtained from crystalline materials in the gigapascal pressure regime on the PEARL diffractometer at ISIS. The quality of the data is assessed through the calculation of coordination numbers and the use of reverse Monte Carlo refinements. The time required to collect data of sufficient quality for detailed analysis is assessed and is found to be of the order of 8 h for a quartz sample. Finally, data from the perovskite LaCo0.35Mn0.65O3 are presented and reveal that PEARL total scattering data offer the potential of extracting local structural information from complex materials at high pressure.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 824
Author(s):  
Giorgia Confalonieri ◽  
Nicola Rotiroti ◽  
Andrea Bernasconi ◽  
Monica Dapiaggi

Spinel gahnite (ZnAl2O4) has been obtained through a hydrothermal synthesis method with a grain size of about 2 nm. The sample was calcined for a few hours at two different temperatures (800 and 900 °C) in order to obtain larger grain sizes to be analyzed by means of powder diffraction with the Rietveld method, and by means of total scattering with the Pair Distribution Function (PDF) method. The idea is to compare the average to the local structure, as a function of increasing grain size. The total scattering data were collected at the European Synchrotron Radiation Facility (ESRF), Grenoble. The samples have been also characterised by means of high resolution Transmission Electron Microscopy (TEM), showing an increasing grain size up to about 9 nm. The average structure presented variations in the inversion degree and an increase in grain size. TEM observations demonstrated that the small crystals are well crystallised: the high resolution images neatly showed the atomic planes, even in the smallest particles. However, the average structure did not properly fit the PDF data in the local region, owing to a slightly different coordination among the octahedra. A new structural model is proposed for the local region of the PDF, that helped our understanding of the differences between a real nanostructured sample and that of a microcrystalline one. The oxygen disorder, due to the inversion grade of the spinel, is demonstrates to be at the basis of the local deviation. No signals of interstitial Zn atoms were detected.


Neutron News ◽  
2013 ◽  
Vol 24 (1) ◽  
pp. 13-14
Author(s):  
Claire White ◽  
Katharine Page

Sign in / Sign up

Export Citation Format

Share Document