Measuring partial fluorescence yield using filtered detectors

2014 ◽  
Vol 21 (4) ◽  
pp. 716-721 ◽  
Author(s):  
T. D. Boyko ◽  
R. J. Green ◽  
A. Moewes ◽  
T. Z. Regier

Typically, X-ray absorption near-edge structure measurements aim to probe the linear attenuation coefficient. These measurements are often carried out using partial fluorescence yield techniques that rely on detectors having photon energy discrimination improving the sensitivity and the signal-to-background ratio of the measured spectra. However, measuring the partial fluorescence yield in the soft X-ray regime with reasonable efficiency requires solid-state detectors, which have limitations due to the inherent dead-time while measuring. Alternatively, many of the available detectors that are not energy dispersive do not suffer from photon count rate limitations. A filter placed in front of one of these detectors will make the energy-dependent efficiency non-linear, thereby changing the responsivity of the detector. It is shown that using an array of filtered X-ray detectors is a viable method for measuring soft X-ray partial fluorescence yield spectra without dead-time. The feasibility of this technique is further demonstrated using α-Fe2O3as an example and it is shown that this detector technology could vastly improve the photon collection efficiency at synchrotrons and that these detectors will allow experiments to be completed with a much lower photon flux reducing X-ray-induced damage.

1993 ◽  
Vol 37 ◽  
pp. 607-617 ◽  
Author(s):  
Glenn A. Waychunas ◽  
Gordon E. Brown

The development of intense synchrotron radiation sources during the last twenty years has enabled several types of x-ray spectroscopy and scattering techniques to come into practical use. One of the most significant methods for the characterization of extremely dilute samples is high resolution x-ray absorption-edge spectroscopy. The technique is usually divided into two separate methods according to whether the x-ray absorption near edge structure (XANES) or the extended x-ray absorption fine structure (EXAFS) is analyzed. XANES features are due mainly to bound-state electronic transitions just below, and on the low energy side of the edge, and to multiple scattering resonances on the top of the edge and at somewhat higher energies. EXAFS features are oscillations due to ejected photoelectron back scattering interference processes in the close vicinity of the absorber atom. XANES analysis is used to determine atom valence, atom site distortion from regular geometries, and other details of the atom site. EXAFS features can be analyzed to recover interatomic distances between the absorber atom and its first few shells of neighbors, as well as the number and types of these neighbors. Together these techniques can provide an atomspecific probe of die short-range structure within almost any type of condensed matter.


Mineralogia ◽  
2008 ◽  
Vol 39 (1-2) ◽  
pp. 31-40 ◽  
Author(s):  
John Rakovan ◽  
Yun Luo ◽  
Olaf Borkiewicz

Synchrotron microanalytical methods in the study of trace and minor elements in apatiteSynchrotron X-ray facilities have the capability for numerous microanalytical methods with spatial resolutions in the micron to submicron range and sensitivities as low as ppm to ppb. These capabilities are the result of a high X-ray brilliance (many orders of magnitude greater than standard tube and rotating anode sources); a continuous, or white, spectrum through the hard X-ray region; high degrees of X-ray columniation and polarization; and new developments in X-ray focusing methods. The high photon flux and pulsed nature of the source also allow for rapid data collection and high temporal resolution in certain experiments. Of particular interest to geoscientists are X-ray fluorescence microprobes which allow for numerous analytical techniques including X-ray fluorescence (XRF) analysis of trace element concentrations and distributions; X-ray absorption spectroscopy (XAS) for chemical speciation, structural and oxidation state information; X-ray diffraction (XRD) for phase identification; and fluorescence microtomography (CMT) for mapping the internal structure of porous or composite materials as well as elemental distributions (Newville et al. 1999; Sutton et al. 2002; Sutton et al. 2004).We have employed several synchrotron based microanalytical methods including XRF, microEXAFS (Extended X-ray Absorption Fine Structure), microXANES (X-ray Absorption Near Edge Structure) and CMT for the study of minor and trace elements in apatite (and other minerals). We have also been conducting time resolved X-ray diffraction to study nucleation of and phase transformations among precursor phases in the formation of apatite from solution at earth surface conditions. Summaries of these studies are given to exemplify the capabilities of synchrotron microanalytical techniques.


2000 ◽  
Vol 14 (25n27) ◽  
pp. 2628-2633
Author(s):  
S. COLONNA ◽  
F. ARCIPRETE ◽  
A. BALZAROTTI ◽  
G. BALESTRINO ◽  
P. G. MEDAGLIA ◽  
...  

EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-Ray Absorption Near Edge Structure) spectroscopies have been used to probe the local bonding of the artificially layered superconducting (BaCuO2)2/(CaCuO2)n (n = 2, 3, 4) superlattices. Fluorescence-yield measurements have been performed above the Cu and Ba K-edges. This study shows that the charge reservoir (CR) block of the Ba/Ca superlattice contains oxygen vacancies randomly distributed in the CuO2 planes and that the two apical oxygen atoms are displaced out of the Ba plane giving rise to buckled BaO planes. These oxygen atoms have a distorted pyramidal and octahedral coordination around Cu at Ba/Ca interface and in the (BaCuO2) block, respectively.


1996 ◽  
Vol 441 ◽  
Author(s):  
S. J. Naftel ◽  
T. K. Sham ◽  
S. R. Das ◽  
D.-X. Xu

AbstractPlatinum silicide films, with a typical thickness of several hundred Å, prepared on n-type Si(100) wafers by UHV mnagnetron sputter deposition followed by rapid thermal annealing, have been studied by Si L2,3-edge X-ray absorption near edge structure (XANES) using both total electron and total fluorescence yield detection. Samples of various annealing times were studied. XANES provides information on the electronic structure and morphology of the samples. By utilizing the sampling depth difference between the two detection methods, we can clearly see XANES data from each layer (eg. surface oxide, silicide) in the sample and can estimate the thickness of the oxide layer.


Author(s):  
R.F. Egerton

SIGMAL is a short (∼ 100-line) Fortran program designed to rapidly compute cross-sections for L-shell ionization, particularly the partial crosssections required in quantitative electron energy-loss microanalysis. The program is based on a hydrogenic model, the L1 and L23 subshells being represented by scaled Coulombic wave functions, which allows the generalized oscillator strength (GOS) to be expressed analytically. In this basic form, the model predicts too large a cross-section at energies near to the ionization edge (see Fig. 1), due mainly to the fact that the screening effect of the atomic electrons is assumed constant over the L-shell region. This can be remedied by applying an energy-dependent correction to the GOS or to the effective nuclear charge, resulting in much closer agreement with experimental X-ray absorption data and with more sophisticated calculations (see Fig. 1 ).


Author(s):  
H. Ade ◽  
B. Hsiao ◽  
G. Mitchell ◽  
E. Rightor ◽  
A. P. Smith ◽  
...  

We have used the Scanning Transmission X-ray Microscope at beamline X1A (X1-STXM) at Brookhaven National Laboratory (BNL) to acquire high resolution, chemical and orientation sensitive images of polymeric samples as well as point spectra from 0.1 μm areas. This sensitivity is achieved by exploiting the X-ray Absorption Near Edge Structure (XANES) of the carbon K edge. One of the most illustrative example of the chemical sensitivity achievable is provided by images of a polycarbonate/pol(ethylene terephthalate) (70/30 PC/PET) blend. Contrast reversal at high overall contrast is observed between images acquired at 285.36 and 285.69 eV (Fig. 1). Contrast in these images is achieved by exploring subtle differences between resonances associated with the π bonds (sp hybridization) of the aromatic groups of each polymer. PET has a split peak associated with these aromatic groups, due to the proximity of its carbonyl groups to its aromatic rings, whereas PC has only a single peak.


2016 ◽  
Vol 88 (7) ◽  
pp. 3826-3835 ◽  
Author(s):  
Bernhard Hesse ◽  
Murielle Salome ◽  
Hiram Castillo-Michel ◽  
Marine Cotte ◽  
Barbara Fayard ◽  
...  

2018 ◽  
Vol 25 (2) ◽  
pp. 484-495 ◽  
Author(s):  
Suelen F. Barros ◽  
Vito R. Vanin ◽  
Alexandre A. Malafronte ◽  
Nora L. Maidana ◽  
Marcos N. Martins

Dead-time effects in X-ray spectra taken with a digital pulse processor and a silicon drift detector were investigated when the number of events at the low-energy end of the spectrum was more than half of the total, at counting rates up to 56 kHz. It was found that dead-time losses in the spectra are energy dependent and an analytical correction for this effect, which takes into account pulse pile-up, is proposed. This and the usual models have been applied to experimental measurements, evaluating the dead-time fraction either from the calculations or using the value given by the detector acquisition system. The energy-dependent dead-time model proposed fits accurately the experimental energy spectra in the range of counting rates explored in this work. A selection chart of the simplest mathematical model able to correct the pulse-height distribution according to counting rate and energy spectrum characteristics is included.


Sign in / Sign up

Export Citation Format

Share Document