scholarly journals A simple instrument to find spatiotemporal overlap of optical/X-ray light at free-electron lasers

2019 ◽  
Vol 26 (3) ◽  
pp. 647-652 ◽  
Author(s):  
Takahiro Sato ◽  
James M. Glownia ◽  
Matthiew R. Ware ◽  
Matthieu Chollet ◽  
Silke Nelson ◽  
...  

A compact and robust diagnostic to determine spatial and temporal overlap between X-ray free-electron laser and optical laser pulses was developed and evaluated using monochromatic X-rays from the Linac Coherent Light Source. It was used to determine temporal overlap with a resolution of ∼10 fs, despite the large pulse energy fluctuations of the monochromatic X-ray pulses, and covers a wide optical wavelength range from ultraviolet to near-infrared with a single configuration.

Author(s):  
Ryan N. Coffee ◽  
James P. Cryan ◽  
Joseph Duris ◽  
Wolfram Helml ◽  
Siqi Li ◽  
...  

The ability to produce ultrashort, high-brightness X-ray pulses is revolutionizing the field of ultrafast X-ray spectroscopy. Free-electron laser (FEL) facilities are driving this revolution, but unique aspects of the FEL process make the required characterization and use of the pulses challenging. In this paper, we describe a number of developments in the generation of ultrashort X-ray FEL pulses, and the concomitant progress in the experimental capabilities necessary for their characterization and use at the Linac Coherent Light Source. This includes the development of sub-femtosecond hard and soft X-ray pulses, along with ultrafast characterization techniques for these pulses. We also describe improved techniques for optical cross-correlation as needed to address the persistent challenge of external optical laser synchronization with these ultrashort X-ray pulses. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.


2014 ◽  
Vol 47 (1) ◽  
pp. 188-197 ◽  
Author(s):  
Changyong Song ◽  
Kensuke Tono ◽  
Jaehyun Park ◽  
Tomio Ebisu ◽  
Sunam Kim ◽  
...  

X-ray free-electron lasers (XFELs) provide intense (∼1012 photons per pulse) coherent X-rays with ultra-short (∼10−14 s) pulse lengths. X-rays of such an unprecedented nature have introduced new means of atomic scale structural investigations, and discoveries are still ongoing. Effective use of XFELs would be further accelerated on a highly adaptable platform where most of the new experiments can be realized. Introduced here is the multiple-application X-ray imaging chamber (MAXIC), which is able to carry out various single-pulse diffraction experiments including single-shot imaging, nanocrystallographic data acquisition and ultra-fast pump–probe scattering for specimens in solid, liquid and gas phases. The MAXIC established at the SPring-8 ångström compact free-electron laser (SACLA) has demonstrated successful applications in the aforementioned experiments, but is not limited to them. Also introduced are recent experiments on single-shot diffraction imaging of Au nanoparticles and serial crystallographic data collection of lysozyme crystals at SACLA.


2007 ◽  
Vol 22 (23) ◽  
pp. 4270-4279
Author(s):  
A. BACCI ◽  
C. MAROLI ◽  
V. PETRILLO ◽  
L. SERAFNI ◽  
M. FERRARIO

The interaction between high-brilliance electron beams and counter-propagating laser pulses produces X rays via Thomson back-scattering. If the laser source is long and intense enough, the electrons of the beam can bunch and a regime of collective effects can establish. In this case of dominating collective effects, the FEL instability can develop and the system behaves like a free-electron laser based on an optical undulator. Coherent X-rays can be irradiated, with a bandwidth very much thinner than that of the corresponding incoherent emission. The emittance of the electron beam and the distribution of the laser energy are the principal quantities that limit the growth of the X-ray signal. In this work we analyse with a 3-D code the transverse effects in the emission produced by a relativistic electron beam when it is under the action of an optical laser pulse and the X-ray spectra obtained. The scalings typical of the optical wiggler, characterized by very short gain lengths and overall time durations of the process make possible considerable emission also with emittance of the order of 1mm mrad.


2018 ◽  
Vol 25 (1) ◽  
pp. 68-71 ◽  
Author(s):  
Shigeki Owada ◽  
Kyo Nakajima ◽  
Tadashi Togashi ◽  
Tetsuo Kayatama ◽  
Makina Yabashi

Arrival timing diagnostics performed at a soft X-ray free-electron laser (FEL) beamline of SACLA are described. Intense soft X-ray FEL pulses with one-dimensional focusing efficiently induce transient changes of optical reflectivity on the surface of GaAs. The arrival timing between soft X-ray FEL and optical laser pulses was successfully measured as a spatial position of the reflectivity change. The temporal resolution evaluated from the imaging system reaches ∼10 fs. This method requires only a small portion of the incident pulse energy, which enables the simultaneous operation of the arrival timing diagnostics and experiments by introducing a wavefront-splitting scheme.


2018 ◽  
Vol 25 (1) ◽  
pp. 289-292 ◽  
Author(s):  
Jangwoo Kim ◽  
Hyo-Yun Kim ◽  
Jaehyun Park ◽  
Sangsoo Kim ◽  
Sunam Kim ◽  
...  

The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) is a recently commissioned X-ray free-electron laser (XFEL) facility that provides intense ultrashort X-ray pulses based on the self-amplified spontaneous emission process. The nano-crystallography and coherent imaging (NCI) hutch with forward-scattering geometry is located at the hard X-ray beamline of the PAL-XFEL and provides opportunities to perform serial femtosecond crystallography and coherent X-ray diffraction imaging. To produce intense high-density XFEL pulses at the interaction positions between the X-rays and various samples, a microfocusing Kirkpatrick–Baez (KB) mirror system that includes an ultra-precision manipulator has been developed. In this paper, the design of a KB mirror system that focuses the hard XFEL beam onto a fixed sample point of the NCI hutch, which is positioned along the hard XFEL beamline, is described. The focusing system produces a two-dimensional focusing beam at approximately 2 µm scale across the 2–11 keV photon energy range. XFEL pulses of 9.7 keV energy were successfully focused onto an area of size 1.94 µm × 2.08 µm FWHM.


2016 ◽  
Vol 34 (3) ◽  
pp. 533-538 ◽  
Author(s):  
A. Curcio ◽  
M. Anania ◽  
F.G. Bisesto ◽  
A. Faenov ◽  
M. Ferrario ◽  
...  

AbstractThe emission of X-rays from solid tin targets irradiated by low-energy (few mJ) femtosecond laser pulses propagated through air plasma sparks is investigated. The aim is that to better understand the X-ray emission mechanism and to show the possibility to produce proper radiation for spectroscopic and imaging applications with a table-top laser system. The utilization of a controlled ultrashort prepulse is found necessary to optimize the conversion efficiency of laser energy into Lα radiation. The optimum contrast between the main pulse and the controlled prepulse is found about 102. A correlation between the laser contrast value and the laser near-infrared spectra at the exit of the plasma spark is observed.


2014 ◽  
Vol 70 (a1) ◽  
pp. C293-C293
Author(s):  
Sébastien Boutet

X-ray Free Electron Lasers such as the Linac Coherent Light Source (LCLS) were built on the promise of single molecule imaging. The extremely intense pulses of x-rays such sources can deliver can in principle provide at the same time the large number of photons required to produce sufficient signal from a single molecule while keeping the pulse duration short enough to prevent radiation damage from destroying the sample before the measurement is complete. This diffract-then-destroy concept allows the measurement to occur rapidly, before the sample is completely damaged after the x-rays have interacted with the sample. After close to 5 years of operation of the first hard x-ray free electron laser in the world, the LCLS, some data exists which makes it possible to review past experiments and technical developments aimed at the single particle imaging. Furthermore, one can discuss the still required technical, computational and theoretical developments to make this a reality. Recent results and future prospects of the technique will be presented in this talk.


2019 ◽  
Vol 26 (3) ◽  
pp. 868-873 ◽  
Author(s):  
Minseok Kim ◽  
Chang-Ki Min ◽  
Intae Eom

Optical laser systems for ultrafast X-ray sciences have been established at the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) beamlines. Three Ti:sapphire regenerative amplifier systems are synchronized to the XFEL with femtosecond precision, and the low temporal jitter of the PAL-XFEL results in an experimental time resolution below 150 fs (full width at half-maximum). A fundamental wave and its harmonics are currently provided for all beamlines, and tunable sources from ultraviolet to near-infrared are available for one beamline. The position stability of the optical laser extracted from the intensity-based center of mass at the sample position is less than 3% (r.m.s.) of the spot size.


2019 ◽  
Vol 26 (3) ◽  
pp. 887-890 ◽  
Author(s):  
Shigeki Owada ◽  
Kyo Nakajima ◽  
Tadashi Togashi ◽  
Tetsuo Katayama ◽  
Hirokatsu Yumoto ◽  
...  

An arrival timing monitor for the soft X-ray free-electron laser (XFEL) beamline of SACLA BL1 has been developed. A small portion of the soft XFEL pulse is branched using the wavefront-splitting method. The branched FEL pulse is one-dimensionally focused onto a GaAs wafer to induce a transient reflectivity change. The beam branching method enables the simultaneous operation of the arrival timing diagnostics and experiments. The temporal resolution evaluated from the imaging system is ∼22 fs in full width at half-maximum, which is sufficient considering the temporal durations of the soft XFEL and the optical laser pulses.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Alexander Malyzhenkov ◽  
Yunieski P. Arbelo ◽  
Paolo Craievich ◽  
Philipp Dijkstal ◽  
Eugenio Ferrari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document