scholarly journals Multiple application X-ray imaging chamber for single-shot diffraction experiments with femtosecond X-ray laser pulses

2014 ◽  
Vol 47 (1) ◽  
pp. 188-197 ◽  
Author(s):  
Changyong Song ◽  
Kensuke Tono ◽  
Jaehyun Park ◽  
Tomio Ebisu ◽  
Sunam Kim ◽  
...  

X-ray free-electron lasers (XFELs) provide intense (∼1012 photons per pulse) coherent X-rays with ultra-short (∼10−14 s) pulse lengths. X-rays of such an unprecedented nature have introduced new means of atomic scale structural investigations, and discoveries are still ongoing. Effective use of XFELs would be further accelerated on a highly adaptable platform where most of the new experiments can be realized. Introduced here is the multiple-application X-ray imaging chamber (MAXIC), which is able to carry out various single-pulse diffraction experiments including single-shot imaging, nanocrystallographic data acquisition and ultra-fast pump–probe scattering for specimens in solid, liquid and gas phases. The MAXIC established at the SPring-8 ångström compact free-electron laser (SACLA) has demonstrated successful applications in the aforementioned experiments, but is not limited to them. Also introduced are recent experiments on single-shot diffraction imaging of Au nanoparticles and serial crystallographic data collection of lysozyme crystals at SACLA.

2007 ◽  
Vol 22 (23) ◽  
pp. 4270-4279
Author(s):  
A. BACCI ◽  
C. MAROLI ◽  
V. PETRILLO ◽  
L. SERAFNI ◽  
M. FERRARIO

The interaction between high-brilliance electron beams and counter-propagating laser pulses produces X rays via Thomson back-scattering. If the laser source is long and intense enough, the electrons of the beam can bunch and a regime of collective effects can establish. In this case of dominating collective effects, the FEL instability can develop and the system behaves like a free-electron laser based on an optical undulator. Coherent X-rays can be irradiated, with a bandwidth very much thinner than that of the corresponding incoherent emission. The emittance of the electron beam and the distribution of the laser energy are the principal quantities that limit the growth of the X-ray signal. In this work we analyse with a 3-D code the transverse effects in the emission produced by a relativistic electron beam when it is under the action of an optical laser pulse and the X-ray spectra obtained. The scalings typical of the optical wiggler, characterized by very short gain lengths and overall time durations of the process make possible considerable emission also with emittance of the order of 1mm mrad.


2019 ◽  
Vol 26 (3) ◽  
pp. 647-652 ◽  
Author(s):  
Takahiro Sato ◽  
James M. Glownia ◽  
Matthiew R. Ware ◽  
Matthieu Chollet ◽  
Silke Nelson ◽  
...  

A compact and robust diagnostic to determine spatial and temporal overlap between X-ray free-electron laser and optical laser pulses was developed and evaluated using monochromatic X-rays from the Linac Coherent Light Source. It was used to determine temporal overlap with a resolution of ∼10 fs, despite the large pulse energy fluctuations of the monochromatic X-ray pulses, and covers a wide optical wavelength range from ultraviolet to near-infrared with a single configuration.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Christian David ◽  
Gediminas Seniutinas ◽  
Mikako Makita ◽  
Benedikt Rösner ◽  
Jens Rehanek ◽  
...  

The performance and parameters of the online photon single-shot spectrometer (PSSS) at the Aramis beamline of the SwissFEL free-electron laser are presented. The device operates between the photon energies 4 and 13 keV and uses diamond transmission gratings and bent Si crystals for spectral measurements on the first diffraction order of the beam. The device has an energy window of 0.7% of the median photon energy of the free-electron laser pulses and a spectral resolution (full width at half-maximum) ΔE/E on the order of 10−5. The device was characterized by comparing its performance with reference data from synchrotron sources, and a parametric study investigated other effects that could affect the reliability of the spectral information.


2018 ◽  
Vol 25 (1) ◽  
pp. 68-71 ◽  
Author(s):  
Shigeki Owada ◽  
Kyo Nakajima ◽  
Tadashi Togashi ◽  
Tetsuo Kayatama ◽  
Makina Yabashi

Arrival timing diagnostics performed at a soft X-ray free-electron laser (FEL) beamline of SACLA are described. Intense soft X-ray FEL pulses with one-dimensional focusing efficiently induce transient changes of optical reflectivity on the surface of GaAs. The arrival timing between soft X-ray FEL and optical laser pulses was successfully measured as a spatial position of the reflectivity change. The temporal resolution evaluated from the imaging system reaches ∼10 fs. This method requires only a small portion of the incident pulse energy, which enables the simultaneous operation of the arrival timing diagnostics and experiments by introducing a wavefront-splitting scheme.


2019 ◽  
Vol 26 (3) ◽  
pp. 619-628 ◽  
Author(s):  
Wenqiang Hua ◽  
Guangzhao Zhou ◽  
Zhe Hu ◽  
Shumin Yang ◽  
Keliang Liao ◽  
...  

X-ray free-electron lasers (XFELs) play an increasingly important role in addressing the new scientific challenges relating to their high brightness, high coherence and femtosecond time structure. As a result of pulse-by-pulse fluctuations, the pulses of an XFEL beam may demonstrate subtle differences in intensity, energy spectrum, coherence, wavefront, etc., and thus on-line monitoring and diagnosis of a single pulse are required for many XFEL experiments. Here a new method is presented, based on a grating splitter and bending-crystal analyser, for single-pulse on-line monitoring of the spatial characteristics including the intensity profile, coherence and wavefront, which was suggested and applied experimentally to the temporal diagnosis of an XFEL single pulse. This simulation testifies that the intensity distribution, coherence and wavefront of the first-order diffracted beam of a grating preserve the properties of the incident beam, by using the coherent mode decomposition of the Gaussian–Schell model and Fourier optics. Indicatively, the first-order diffraction of appropriate gratings can be used as an alternative for on-line monitoring of the spatial properties of a single pulse without any characteristic deformation of the principal diffracted beam. However, an interesting simulation result suggests that the surface roughness of gratings will degrade the spatial characteristics in the case of a partially coherent incident beam. So, there exists a suitable roughness value for non-destructive monitoring of the spatial properties of the downstream beam, which depends on the specific optical path. Here, experiments based on synchrotron radiation X-rays are carried out in order to verify this method in principle. The experimental results are consistent with the theoretical calculations.


2019 ◽  
Vol 37 (2) ◽  
pp. 235-241 ◽  
Author(s):  
Victor Tkachenko ◽  
Martin Büscher ◽  
Hauke Höppner ◽  
Nikita Medvedev ◽  
Vladimir Lipp ◽  
...  

AbstractModern free-electron lasers (FEL) operating in XUV (extreme ultraviolet) or X-ray range allow an access to novel research areas. An example is the ultrafast ionization of a solid by an intense femtosecond FEL pulse in XUV which consequently leads to a change of the complex index of refraction on an ultrashort timescale. The photoionization and subsequent impact ionization resulting in electronic and atomic dynamics are modeled with our hybrid code XTANT(X-ray thermal and non-thermal transitions) and a Monte Carlo code XCASCADE(X-ray-induced electron cascades). The simulations predict the temporal kinetics of FEL-induced electron cascades and thus yield temporally and spatially resolved information on the induced changes of the optical properties. In a series of experiments at FERMI and LCLS, single shot measurements with spatio-temporal encoding of the ionization process have been performed by a correlation of the FEL pump pulse with an optical femtosecond probe pulse. An excellent agreement between the experiment and the simulation has been found. We also show that such kind of experiments forms the basis for pulse duration and arrival time jitter monitoring as currently under development for XUV-FELs.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael Schneider ◽  
Christian M. Günther ◽  
Bastian Pfau ◽  
Flavio Capotondi ◽  
Michele Manfredda ◽  
...  

2018 ◽  
Vol 25 (1) ◽  
pp. 289-292 ◽  
Author(s):  
Jangwoo Kim ◽  
Hyo-Yun Kim ◽  
Jaehyun Park ◽  
Sangsoo Kim ◽  
Sunam Kim ◽  
...  

The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) is a recently commissioned X-ray free-electron laser (XFEL) facility that provides intense ultrashort X-ray pulses based on the self-amplified spontaneous emission process. The nano-crystallography and coherent imaging (NCI) hutch with forward-scattering geometry is located at the hard X-ray beamline of the PAL-XFEL and provides opportunities to perform serial femtosecond crystallography and coherent X-ray diffraction imaging. To produce intense high-density XFEL pulses at the interaction positions between the X-rays and various samples, a microfocusing Kirkpatrick–Baez (KB) mirror system that includes an ultra-precision manipulator has been developed. In this paper, the design of a KB mirror system that focuses the hard XFEL beam onto a fixed sample point of the NCI hutch, which is positioned along the hard XFEL beamline, is described. The focusing system produces a two-dimensional focusing beam at approximately 2 µm scale across the 2–11 keV photon energy range. XFEL pulses of 9.7 keV energy were successfully focused onto an area of size 1.94 µm × 2.08 µm FWHM.


2019 ◽  
Vol 9 (22) ◽  
pp. 4932 ◽  
Author(s):  
Toshiyuki Nishiyama ◽  
Christoph Bostedt ◽  
Ken R. Ferguson ◽  
Christopher Hutchison ◽  
Kiyonobu Nagaya ◽  
...  

X-ray free-electron lasers (XFELs) deliver ultrashort coherent laser pulses in the X-ray spectral regime, enabling novel investigations into the structure of individual nanoscale samples. In this work, we demonstrate how single-shot small-angle X-ray scattering (SAXS) measurements combined with fluorescence and ion time-of-flight (TOF) spectroscopy can be used to obtain size- and structure-selective evaluation of the light-matter interaction processes on the nanoscale. We recorded the SAXS images of single xenon clusters using XFEL pulses provided by the SPring-8 Angstrom compact free-electron laser (SACLA). The XFEL fluences and the radii of the clusters at the reaction point were evaluated and the ion TOF spectra and fluorescence spectra were sorted accordingly. We found that the XFEL fluence and cluster size extracted from the diffraction patterns showed a clear correlation with the fluorescence and ion TOF spectra. Our results demonstrate the effectiveness of the multispectroscopic approach for exploring laser–matter interaction in the X-ray regime without the influence of the size distribution of samples and the fluence distribution of the incident XFEL pulses.


Sign in / Sign up

Export Citation Format

Share Document