scholarly journals IRIXS Spectrograph: an ultra high-resolution spectrometer for tender RIXS

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Joel Bertinshaw ◽  
Simon Mayer ◽  
Frank-Uwe Dill ◽  
Hakuto Suzuki ◽  
Olaf Leupold ◽  
...  

The IRIXS Spectrograph represents a new design of an ultra-high-resolution resonant inelastic X-ray scattering (RIXS) spectrometer that operates at the Ru L 3-edge (2840 eV). First proposed in the field of hard X-rays by Shvyd'ko [(2015), Phys. Rev. A, 91, 053817], the X-ray spectrograph uses a combination of laterally graded multilayer mirrors and collimating/dispersing Ge(111) crystals optics in a novel spectral imaging approach to overcome the energy resolution limitation of a traditional Rowland-type spectrometer [Gretarsson et al. (2020), J. Synchrotron Rad. 27, 538–544]. In combination with a dispersionless nested four-bounce high-resolution monochromator design that utilizes Si(111) and Al2O3(110) crystals, an overall energy resolution better than 35 meV full width at half-maximum has been achieved at the Ru L 3-edge, in excellent agreement with ray-tracing simulations.

1998 ◽  
Vol 5 (3) ◽  
pp. 515-517 ◽  
Author(s):  
M. Frank ◽  
C. A. Mears ◽  
S. E. Labov ◽  
L. J. Hiller ◽  
J. B. le Grand ◽  
...  

Experimental results are presented obtained with a cryogenically cooled high-resolution X-ray spectrometer based on a 141 × 141 µm Nb-Al-Al2O3-Al-Nb superconducting tunnel junction (STJ) detector in an SR-XRF demonstration experiment. STJ detectors can operate at count rates approaching those of semiconductor detectors while still providing a significantly better energy resolution for soft X-rays. By measuring fluorescence X-rays from samples containing transition metals and low-Z elements, an FWHM energy resolution of 6–15 eV for X-rays in the energy range 180–1100 eV has been obtained. The results show that, in the near future, STJ detectors may prove very useful in XRF and microanalysis applications.


1984 ◽  
Vol 17 (5) ◽  
pp. 337-343 ◽  
Author(s):  
O. Yoda

A high-resolution small-angle X-ray scattering camera has been built, which has the following features. (i) The point collimation optics employed allows the scattering cross section of the sample to be directly measured without corrections for desmearing. (ii) A small-angle resolution better than 0.5 mrad is achieved with a camera length of 1.6 m. (iii) A high photon flux of 0.9 photons μs−1 is obtained on the sample with the rotating-anode X-ray generator operated at 40 kV–30 mA. (iv) Incident X-rays are monochromated by a bent quartz crystal, which makes the determination of the incident X-ray intensity simple and unambiguous. (v) By rotation of the position-sensitive proportional counter around the direct beam, anisotropic scattering patterns can be observed without adjusting the sample. Details of the design and performance are presented with some applications.


2016 ◽  
Vol 23 (4) ◽  
pp. 880-886 ◽  
Author(s):  
Jungho Kim ◽  
Xianbo Shi ◽  
Diego Casa ◽  
Jun Qian ◽  
XianRong Huang ◽  
...  

Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the IrL3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the IrL3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.


2006 ◽  
Vol 77 (11) ◽  
pp. 113108 ◽  
Author(s):  
G. Ghiringhelli ◽  
A. Piazzalunga ◽  
C. Dallera ◽  
G. Trezzi ◽  
L. Braicovich ◽  
...  

2018 ◽  
Vol 33 (12) ◽  
pp. 2070-2082 ◽  
Author(s):  
Le Pape Pierre ◽  
Blanchard Marc ◽  
Juhin Amélie ◽  
Rueff Jean-Pascal ◽  
Ducher Manoj ◽  
...  

To improve our knowledge of arsenic local environment in sulfide minerals, Resonant Inelastic X-Ray Scattering (RIXS) maps and High-Energy Resolution Fluorescence Detected (HERFD) XANES measurements are performed at the As K-edge. In addition, the spectra are compared to XANES modelled through first-principles calculations.


1999 ◽  
Author(s):  
Piet A. J. de Korte ◽  
Henk F. Hoevers ◽  
Marcel P. Bruijn ◽  
Antonio C. Bento ◽  
Willem A. Mels ◽  
...  

2015 ◽  
Vol 22 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Daisuke Ishikawa ◽  
David S. Ellis ◽  
Hiroshi Uchiyama ◽  
Alfred Q. R. Baron

The use of temperature-gradient analyzers for non-resonant high-resolution inelastic X-ray scattering is investigated. The gradient compensates for geometrical broadening of the energy resolution by adjusting the lattice spacing of the analyzer crystal. Applying a ∼12 mK temperature gradient across a 9.5 cm analyzer, resolutions of 0.75 (2) meV FWHM at 25.7 keV for Si(13 13 13) and 1.25 (2) meV at 21.7 keV for Si(11 11 11) were measured, while retaining large (250 mm) clearance between the sample position and detector, and reasonable (9.3 mrad × 8.8 mrad) analyzer acceptance. The temperature control and stability are discussed.


IUCrJ ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 761-772 ◽  
Author(s):  
Thomas P. Halsted ◽  
Keitaro Yamashita ◽  
Chai C. Gopalasingam ◽  
Rajesh T. Shenoy ◽  
Kunio Hirata ◽  
...  

Copper-containing nitrite reductases (CuNiRs) that convert NO2−to NO via a CuCAT–His–Cys–CuETproton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCATand HisCATare deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+or OD−, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCATand is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2−a proton is transferred from the bridging water to the Oδ2atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCATto the bound nitrite, enabling the reaction to proceed.


Sign in / Sign up

Export Citation Format

Share Document