Cryogenic high-resolution X-ray spectrometers for SR-XRF and microanalysis

1998 ◽  
Vol 5 (3) ◽  
pp. 515-517 ◽  
Author(s):  
M. Frank ◽  
C. A. Mears ◽  
S. E. Labov ◽  
L. J. Hiller ◽  
J. B. le Grand ◽  
...  

Experimental results are presented obtained with a cryogenically cooled high-resolution X-ray spectrometer based on a 141 × 141 µm Nb-Al-Al2O3-Al-Nb superconducting tunnel junction (STJ) detector in an SR-XRF demonstration experiment. STJ detectors can operate at count rates approaching those of semiconductor detectors while still providing a significantly better energy resolution for soft X-rays. By measuring fluorescence X-rays from samples containing transition metals and low-Z elements, an FWHM energy resolution of 6–15 eV for X-rays in the energy range 180–1100 eV has been obtained. The results show that, in the near future, STJ detectors may prove very useful in XRF and microanalysis applications.

1998 ◽  
Vol 4 (6) ◽  
pp. 616-621 ◽  
Author(s):  
S. Friedrich ◽  
C.A. Mears ◽  
B. Nideröst ◽  
L.J. Hiller ◽  
M. Frank ◽  
...  

Cryogenic energy-dispersive X-ray detectors are being developed because of their superior energy resolution (10 eV FWHM for keV X-rays) compared to that achieved in semiconductor energy-dispersive spectrometry (EDS) systems. So far, their range of application is limited because of their comparably small size and low count rate. We present data on the development of superconducting tunnel junction (STJ) detector arrays to address both of these issues. A single STJ detector has a resolution of around 10 eV below 1 keV and can be operated at count rates of the order 10,000 counts/sec. We show that the simultaneous operation of several STJ detectors does not dimish their energy resolution significantly, and it increases the detector area and the maximum count rate by a factor given by the total number of independent channels.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Joel Bertinshaw ◽  
Simon Mayer ◽  
Frank-Uwe Dill ◽  
Hakuto Suzuki ◽  
Olaf Leupold ◽  
...  

The IRIXS Spectrograph represents a new design of an ultra-high-resolution resonant inelastic X-ray scattering (RIXS) spectrometer that operates at the Ru L 3-edge (2840 eV). First proposed in the field of hard X-rays by Shvyd'ko [(2015), Phys. Rev. A, 91, 053817], the X-ray spectrograph uses a combination of laterally graded multilayer mirrors and collimating/dispersing Ge(111) crystals optics in a novel spectral imaging approach to overcome the energy resolution limitation of a traditional Rowland-type spectrometer [Gretarsson et al. (2020), J. Synchrotron Rad. 27, 538–544]. In combination with a dispersionless nested four-bounce high-resolution monochromator design that utilizes Si(111) and Al2O3(110) crystals, an overall energy resolution better than 35 meV full width at half-maximum has been achieved at the Ru L 3-edge, in excellent agreement with ray-tracing simulations.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


1991 ◽  
Vol 01 (03) ◽  
pp. 251-258 ◽  
Author(s):  
M. TERASAWA

K, L, and M X-rays in the wavelengths between 6Å and 130Å generated by the bombardment of 200 keV protons and other heavy ions were measured by means of a wavelength dispersive Bragg’s spectrometer. The X-ray peak intensity was fairly high in general, while the background was very low. The technique was favorably applied to a practical analysis of several light elements (Be, B, C, N, O, and F). Use of moderate-energy heavy ions considering the wavelength selectivity in X-ray generation was effective for the element analysis. The high-resolution spectrometry in the analytical application of ion-induced X-ray generation was found to be useful for the study of fine electronic structure, e.g. satellite and hypersatellite X-ray study, and of the chemical state of materials.


2016 ◽  
Vol 23 (6) ◽  
pp. 1462-1473 ◽  
Author(s):  
Sebastian Cartier ◽  
Matias Kagias ◽  
Anna Bergamaschi ◽  
Zhentian Wang ◽  
Roberto Dinapoli ◽  
...  

MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor,e.g.inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented.


2021 ◽  
Author(s):  
Md Inzamam Ul Haque ◽  
Abhishek K Dubey ◽  
Jacob D Hinkle

Deep learning models have received much attention lately for their ability to achieve expert-level performance on the accurate automated analysis of chest X-rays. Although publicly available chest X-ray datasets include high resolution images, most models are trained on reduced size images due to limitations on GPU memory and training time. As compute capability continues to advance, it will become feasible to train large convolutional neural networks on high-resolution images. This study is based on the publicly available MIMIC-CXR-JPG dataset, comprising 377,110 high resolution chest X-ray images, and provided with 14 labels to the corresponding free-text radiology reports. We find, interestingly, that tasks that require a large receptive field are better suited to downscaled input images, and we verify this qualitatively by inspecting effective receptive fields and class activation maps of trained models. Finally, we show that stacking an ensemble across resolutions outperforms each individual learner at all input resolutions while providing interpretable scale weights, suggesting that multi-scale features are crucially important to information extraction from high-resolution chest X-rays.


2013 ◽  
Vol 19 (S2) ◽  
pp. 1258-1259 ◽  
Author(s):  
H. Takahashi ◽  
N. Handa ◽  
T. Murano ◽  
M. Terauchi ◽  
M. Koike ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


1984 ◽  
Vol 17 (5) ◽  
pp. 337-343 ◽  
Author(s):  
O. Yoda

A high-resolution small-angle X-ray scattering camera has been built, which has the following features. (i) The point collimation optics employed allows the scattering cross section of the sample to be directly measured without corrections for desmearing. (ii) A small-angle resolution better than 0.5 mrad is achieved with a camera length of 1.6 m. (iii) A high photon flux of 0.9 photons μs−1 is obtained on the sample with the rotating-anode X-ray generator operated at 40 kV–30 mA. (iv) Incident X-rays are monochromated by a bent quartz crystal, which makes the determination of the incident X-ray intensity simple and unambiguous. (v) By rotation of the position-sensitive proportional counter around the direct beam, anisotropic scattering patterns can be observed without adjusting the sample. Details of the design and performance are presented with some applications.


2014 ◽  
Vol 21 (4) ◽  
pp. 762-767 ◽  
Author(s):  
Ari-Pekka Honkanen ◽  
Roberto Verbeni ◽  
Laura Simonelli ◽  
Marco Moretti Sala ◽  
Ali Al-Zein ◽  
...  

Wavelength-dispersive high-resolution X-ray spectrometers often employ elastically bent crystals for the wavelength analysis. In a preceding paper [Honkanenet al.(2014).J. Synchrotron Rad.21, 104–110] a theory for quantifying the internal stress of a macroscopically large spherically curved analyser crystal was presented. Here the theory is applied to compensate for the corresponding decrease of the energy resolution. The technique is demonstrated with a Johann-type spectrometer using a spherically bent Si(660) analyser in near-backscattering geometry, where an improvement in the energy resolution from 1.0 eV down to 0.5 eV at 9.7 keV incident photon energy was observed.


2016 ◽  
Vol 23 (4) ◽  
pp. 880-886 ◽  
Author(s):  
Jungho Kim ◽  
Xianbo Shi ◽  
Diego Casa ◽  
Jun Qian ◽  
XianRong Huang ◽  
...  

Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the IrL3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the IrL3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.


Sign in / Sign up

Export Citation Format

Share Document