Variation of cation distribution with temperature and its consequences on thermal expansion for Ca3Eu2(BO3)4

Author(s):  
Katarzyna M. Kosyl ◽  
Wojciech Paszkowicz ◽  
Alexey N. Shekhovtsov ◽  
Miron B. Kosmyna ◽  
Jerzy Antonowicz ◽  
...  

The structure of calcium europium orthoborate, Ca3Eu2(BO3)4, was determined using high-resolution powder X-ray diffraction data collected at the ID22 beamline (ESRF) under ambient conditions, as well as at high temperature. Rietveld refinement allowed determination of the lattice constants and structural details, including the Ca/Eu ratios at the three cationic sites and their evolution with temperature. Clear thermal expansion anisotropy was found, and slope changes of lattice-constant dependencies on temperature were observed at 923 K. Above this temperature the changes in occupation of the Ca/Eu sites occur, exhibiting a tendency towards a more uniform Eu distribution over the three Ca/Eu sites. Possible structural origins of the observed thermal expansion anisotropy are discussed.

1995 ◽  
Vol 28 (5) ◽  
pp. 508-512 ◽  
Author(s):  
D.-M. Liu ◽  
L.-J. Lin ◽  
C.-J. Chen

Thermal expansion of (Sr1−x , K2x )Zr4(PO4)6 (SrKZP) (with x = 0–1) ceramic was investigated using both a dilatometer and a high-temperature X-ray diffractometer. The coefficients of thermal expansion (CTEs) of the SrKZP ceramic measured by the dilatometer demonstrate a similar trend as those from high-temperature X-ray diffraction. Both measurements show an ultra-low CTE at x = 0.5; nevertheless, this composition shows significant lattice thermal-expansion anisotropy (TEA), while the minimum TEA appears with composition x = 0.2. Although it possessed a sufficient degree of TEA, the x = 0.5 composition showed no visible microcracks or negligible microcracks over a grain size as large as 15 μm. A transition of space group from R{\bar 3} to R{\bar 3}c with composition between x = 0.3 and x = 0.5 has been observed. The crystal structure of the SrKZP ceramic with possible occupations of strontium and/or potassium within the lattice in relation to their influence on the CTEs is proposed.


2018 ◽  
Vol 212 ◽  
pp. 161-166 ◽  
Author(s):  
Adam C. Lindsey ◽  
Matthew Loyd ◽  
Maulik K. Patel ◽  
Ryan Rawl ◽  
Haidong Zhou ◽  
...  

1961 ◽  
Vol 5 ◽  
pp. 238-243 ◽  
Author(s):  
Dale A. Vaughan ◽  
Charles M. Schwartz

AbstractTwo high-temperature X-ray diffraction cameras are described which have been employed at Battelle to determine thermal expansion of metals and ceramic materials. Specimen preparation and temperature measurement and control are described. Lattice-parameter data vs. temperature are presented for uranium, uranium dioxide, and magnesium oxide.


2007 ◽  
Vol 280-283 ◽  
pp. 1179-1184 ◽  
Author(s):  
Ik Jin Kim ◽  
Hyung Chul Kim ◽  
In Sub Han ◽  
Christos G. Aneziris

High temperature structural ceramics based on Al2TiO5-ZrTiO4 (ZAT) having excellent thermal-shock-resistance were synthesized by a reaction sintering. The ZAT ceramics sintered at 1600oC had a negative thermal expansions up to 1000oC and a much lower thermal expansion coefficient (0.3 ~ 1.3 x 10-6 /K) than that of polycrystalline Al2TiO5 (1.5 x 10-6 /K). These low thermal expansion are apparently due to a combination of microcracking caused by the large thermal expansion anisotropy of the crystal axes of the Al2TiO5 phase. The microstructural degradation of the composites after various thermal treatment for high temperature applications were analyzed by scanning electron microscopy, X-ray diffraction, ultrasonic and dilatometer.


1995 ◽  
Vol 10 (5) ◽  
pp. 1301-1306 ◽  
Author(s):  
V.V.S.S. Sai Sunder ◽  
A. Halliyal ◽  
A.M. Umarji

Compositions in the (Pb1−xBix (Ti1−xFex)O3 solid solution system for x ⋚ 0.7 show unusually large tetragonal distortion. High-temperature x-ray diffraction was used to study the tetragonal distortion as a function of temperature (25–700 °C) for compositions (x = 0–0.7) using powders prepared by solid-state reaction in the above system. Large changes in the lattice parameters were observed over a narrow temperature range near Curie temperature (TC) for compositions near the morphotropic phase boundary (MPB) (x ≃ 0.7). Compositions near MPB showed a c/a ratio of 1.18 at room temperature. Polar plots of lattice constants at different temperatures indicated strong anisotropic thermal expansion with zero thermal expansion along the [201] direction.


Sign in / Sign up

Export Citation Format

Share Document