Nontypical iodine–halogen bonds in the crystal structure of (3E)-8-chloro-3-iodomethylidene-2,3-dihydro-1,4-oxazino[2,3,4-ij]quinolin-4-ium triiodide

2016 ◽  
Vol 72 (4) ◽  
pp. 341-345 ◽  
Author(s):  
E. V. Bartashevich ◽  
V. I. Batalov ◽  
I. D. Yushina ◽  
A. I. Stash ◽  
Y. S. Chen

Two kinds of iodine–iodine halogen bonds are the focus of our attention in the crystal structure of the title salt, C12H8ClINO+·I3−, described by X-ray diffraction. The first kind is a halogen bond, reinforced by charges, between the I atom of the heterocyclic cation and the triiodide anion. The second kind is the rare case of a halogen bond between the terminal atoms of neighbouring triiodide anions. The influence of relatively weakly bound iodine inside an asymmetric triiodide anion on the thermal and Raman spectroscopic properties has been demonstrated.

Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 506 ◽  
Author(s):  
Irina Yushina ◽  
Natalya Tarasova ◽  
Dmitry Kim ◽  
Vladimir Sharutin ◽  
Ekaterina Bartashevich

The interrelation between noncovalent bonds and physicochemical properties is in the spotlight due to the practical aspects in the field of crystalline material design. Such study requires a number of similar substances in order to reveal the effect of structural features on observed properties. For this reason, we analyzed a series of three substituted thiazolo[2,3-b][1,3]thiazinium triiodides synthesized by an iodocyclization reaction. They have been characterized with the use of X-ray diffraction, Raman spectroscopy, and thermal analysis. Various types of noncovalent interactions have been considered, and an S…I chalcogen bond type has been confirmed using the electronic criterion based on the calculated electron density and electrostatic potential. The involvement of triiodide anions in the I…I halogen and S…I chalcogen bonding is reflected in the Raman spectroscopic properties of the I–I bonds: identical bond lengths demonstrate different wave numbers of symmetric triiodide vibration and different values of electron density at bond critical points. Chalcogen and halogen bonds formed by the terminal iodine atom of triiodide anion and numerous cation…cation pairwise interactions can serve as one of the reasons for increased thermal stability and retention of iodine in the melt under heating.


IUCrJ ◽  
2015 ◽  
Vol 2 (5) ◽  
pp. 498-510 ◽  
Author(s):  
Christer B. Aakeröy ◽  
Christine L. Spartz ◽  
Sean Dembowski ◽  
Savannah Dwyre ◽  
John Desper

As halogen bonds gain prevalence in supramolecular synthesis and materials chemistry, it has become necessary to examine more closely how such interactions compete with or complement hydrogen bonds whenever both are present within the same system. As hydrogen and halogen bonds have several fundamental features in common, it is often difficult to predict which will be the primary interaction in a supramolecular system, especially as they have comparable strength and geometric requirements. To address this challenge, a series of molecules containing both hydrogen- and halogen-bond donors were co-crystallized with various monotopic, ditopic symmetric and ditopic asymmetric acceptor molecules. The outcome of each reaction was examined using IR spectroscopy and, whenever possible, single-crystal X-ray diffraction. 24 crystal structures were obtained and subsequently analyzed, and the synthon preferences of the competing hydrogen- and halogen-bond donors were rationalized against a background of calculated molecular electrostatic potential values. It has been shown that readily accessible electrostatic potentials can offer useful practical guidelines for predicting the most likely primary synthons in these co-crystals as long as the potential differences are weighted appropriately.


2001 ◽  
Vol 16 (4) ◽  
pp. 903-906 ◽  
Author(s):  
M. S. Tomar ◽  
R. Melgarejo ◽  
P. S. Dobal ◽  
R. S. Katiyar

Zn1–xMgxO is an important material for optoelectronic devices. We synthesized this material using a solution-based route. We investigated in detail the structural behavior of this material system using x-ray diffraction and Raman spectroscopy. Mg substitution up to x ≈ 0.10 does not change the crystal structure, as revealed by x-ray diffraction and Raman spectroscopic studies. This synthesis route is also suitable to prepare thin films by spin coating with the possibility of p and n doping.


1980 ◽  
Vol 33 (5) ◽  
pp. 1073 ◽  
Author(s):  
J Cannon ◽  
V Lojanapiwatna ◽  
C Raston ◽  
W Sinchai ◽  
A White

Plumbagin (1), droserone (2), hydroxydroserone (4) and four new quinones, nepenthone-A, nepenth-one-B, nepenthone-C (17) and nepenthone-E (9), have been isolated from the roots of Nepenthes rafflesiana Jack. A fifth quinone-nepenthone-D-has been detected in the extract and has been assigned the tentative structure (29) from its spectroscopic properties. ��� The crystal structure of nepenthone-E (9) was determined by X-ray diffraction; diffractometer data at 295 K were refined by full-matrix least squares to a residual of 0.061 (1040 'observed' reflections). Crystals of nepenthone-E (9) are triclinic, Pī a 7.579 (4), b 7.764 (5), c 10.806 (7) Ǻ, α 70.86 (4), β 101.40 (5), γ 91.70 (5)°, Z 2. ��� The structure of nepenthone-C (17) has been confirmed by an unambiguous synthesis. A synthesis of 2,7,8-trimethoxy-3-methyl-5,6-methylenedioxynaphtho-1,4-quinone (49) has revealed that this substance (49) is not identical with the O,O-dimethyl ether of nepenthone-A, and it is suggested that nepenthone-A is either the 5- or 8-O-methyl ether of 2,5,8-trihydroxy-3-methyl-6,7-methylenedioxy-naphtho-1,4-quinone [(36) or (37), respectively].


Author(s):  
Marco Saccone ◽  
Giancarlo Terraneo ◽  
Tullio Pilati ◽  
Gabriella Cavallo ◽  
Arri Priimagi ◽  
...  

Halogen bonding is emerging as a powerful non-covalent interaction in the context of supramolecular photoresponsive materials design, particularly due to its high directionality. In order to obtain further insight into the solid-state features of halogen-bonded photoactive molecules, three halogen-bonded co-crystals containing an azobenzene-based difunctional halogen-bond donor molecule, (E)-bis(4-iodo-2,3,5,6-tetrafluorophenyl)diazene, C12F8I2N2, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The crystal structure of the non-iodinated homologue (E)-bis(2,3,5,6-tetrafluorophenyl)diazene, C12H2F8N2, is also reported. It is demonstrated that the studied halogen-bond donor molecule is a reliable tecton for assembling halogen-bonded co-crystals with potential photoresponsive behaviour. The azo group is not involved in any specific intermolecular interactions in any of the co-crystals studied, which is an interesting feature in the context of enhanced photoisomerization behaviour and photoactive properties of the material systems.


1985 ◽  
Vol 38 (5) ◽  
pp. 809 ◽  
Author(s):  
H Becker ◽  
L Hansen ◽  
BW Skelton ◽  
AH White

(E)-1-(9-Anthryl)-2-(10-methyl-9-anthryl) ethelle has been synthesized from 10-methyl-9-anthraldehyde and (9-anthrylmethyl) triphenylphosphonium bromide, and its crystal structure has been determined by X-ray diffraction. Its molecular geometry was found to be such as to have the planes of the two anthracene moieties form an angle of 70.8°, the plane of the ethene bond bring twisted out of the planes of the anthracenes by an angle of about 55°. The intermolecular arrangement of parallel adjacent molecules in the crystal lattice is characterized by shifts about the short and long axes of the anthracenes. The excimer-like crystal fluorescence is attributed to the interplanar distance of 3.5 Ǻ between anthracene π- systems in parallel adjacent molecules. Crystals are triclinic, Pī , a 12.95(1), b 9.316(6), c 9.098(9) Ǻ, α 86.17(7), β 72.26(7), γ 74.61(6)°,Z 2; R was 0.054 for 1059 independent 'observed' reflections.


2018 ◽  
Vol 233 (6) ◽  
pp. 371-377 ◽  
Author(s):  
Margarita Bulatova ◽  
Anna A. Melekhova ◽  
Alexander S. Novikov ◽  
Daniil. M. Ivanov ◽  
Nadezhda A. Bokach

AbstractThe crystal structure of [Cu2(μ-O)(μ-I)2(CNXyl)4]·I2(2·I2) was determined from single-crystal X-ray diffraction data. The adduct2·I2represents the first example of structurally characterized isocyanide-copper(II) complexes. In the structure of2·I2,2forms independent chains connected through molecular iodine via I···I–I···I halogen bonding. The DFT calculations and topological analysis of the electron density distribution within the formalism of Bader’s theory (QTAIM method) were performed for model complex2·I2and the obtained results allowed the attribution of these contacts to moderate strength (3.8–5.3 kcal/mol) non-covalent contacts exhibiting some covalent character.


1990 ◽  
Vol 43 (2) ◽  
pp. 439 ◽  
Author(s):  
D Arbain ◽  
LT Byrne ◽  
JR Cannon ◽  
LM Engelhardt ◽  
AH White

(-)-Phyllochrysine (1), (-)-securinine (2) and a new alkaloid (+)-15α-methoxy-14,15-dihydrophyllochrysine (3) have been isolated from both the bark and roots of Margaritaria indica ( Dalz .) G. L. Webster. The structure and absolute configuration of (3) follow from its spectroscopic properties and its synthesis from (-)- phyllochrysine (1) as well as from the crystal structure of its hydrobromide, obtained by X-ray diffraction. Diffractometer data at 295 K were refined by least-squares techniques to a residual of 0.053 (991 'observed' reflections). Crystals of 15α-methoxy-14,15-dihydrophyllochrysine hydrobromide are orthorhombic, P212121, a 14.324(3), b 14.194(3), c 7.240(2)Ǻ, Z 4.


2003 ◽  
Vol 58 (10) ◽  
pp. 955-958 ◽  
Author(s):  
H. Kara ◽  
Y. Elerman ◽  
A. Elmali

A nickel(II) complex, [Ni2(L)(3,5-prz)], (L = 1,3-bis(2-hydroxy-5-bromosalicylidene amino) propan-2-ol; 3,5-prz = 3,5-dimethylpyrazolate), was synthesized and characterized by means of elemental analysis, infrared and electronic spectra. The crystal structure of the complex has been determined by X-ray diffraction. The nickel(II) ions are bridged by the alkoxo group of the ligand and the N atoms of the μ-pyrazolate group. Each nickel ion is coordinated by two O atoms and two N atoms, forming a square with trans-N2O2 geometry.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3305 ◽  
Author(s):  
Carolina von Essen ◽  
Kari Rissanen ◽  
Rakesh Puttreddy

Two series of 2,5-dihalopyridine-Cu(I)A (A = I, Br) complexes based on 2-X-5-iodopyridine and 2-X-5-bromopyridine (X = F, Cl, Br and I) are characterized by using single-crystal X-ray diffraction analysis to examine the nature of C2−X2···A–Cu and C5−X5···A–Cu halogen bonds. The reaction of the 2,5-dihalopyridines and Cu(I) salts allows the synthesis of eight 1-D coordination polymers and a discrete structure. The resulting Cu(I)-complexes are linked by C−X···A–Cu halogen bonds forming 3-D supramolecular networks. The C−X···A–Cu halogen bonds formed between halopyridine ligands and copper(I)-bound halide ions are stronger than C−X···X’–C interactions between two 2,5-dihalopyridine ligands. The C5−I5···I–Cu and C5−Br5···Br–Cu halogens bonds are shorter for C2-fluorine than C2-chlorine due to the greater electron-withdrawing power of fluorine. In 2,5-diiodopyridine-Cu(I)Br complex, the shorter C2−I2···Br–Cu [3.473(5) Å] distances are due to the combined polarization of C2-iodine by C2−I2···Cu interactions and para-electronic effects offered by the C5-iodine, whilst the long halogen bond contacts for C5−I5···Br–Cu [3.537(5) Å] are indicative that C2-iodine has a less para-electronic influence on the C5-iodine. In 2-fluoro-5-X-pyridine-Cu(I) complexes, the C2-fluorine is halogen bond passive, while the other C2-halogens in 2,5-dihalopyridine-Cu(I), including C2-chlorine, participate in halogen bonding interactions.


Sign in / Sign up

Export Citation Format

Share Document