scholarly journals Synthesis, structural elucidation, characterization and theoretical DFT study of 1-(o-tolyl)biguanidium chloride

2020 ◽  
Vol 76 (6) ◽  
pp. 572-578
Author(s):  
Kamel Kaabi ◽  
Kacem Klai ◽  
Emmanuel Wenger ◽  
Christian Jelsch ◽  
Frédéric Lefebvre ◽  
...  

The structure of the new salt 1-(o-tolyl)biguanidium chloride, C9H14N5 +·Cl−, has been determined by single-crystal X-ray diffraction. The salt crystallizes in the monoclinic space group C2/c. In this structure, the chloride and biguanidium hydrophilic ions are mostly connected to each other via N—H...N and N—H...Cl hydrogen bonds to form layers parallel to the ab plane around y = 1 \over 3 and y = 2 \over 3. The 2-methylbenzyl groups form layers between these layers around y = 0 and y = 1 \over 2, with the methyl group forming C—H...π interactions with the aromatic ring. Intermolecular interactions on the Hirshfeld surface were investigated in terms of contact enrichment and electrostatic energy, and confirm the role of strong hydrogen bonds along with hydrophobic interactions. A correlation between electrostatic energy and contact enrichment is found only for the strongly attractive (N—H...Cl−) and repulsive contacts. Electrostatic energies between ions reveal that the interacting biguanidium cation pairs are repulsive and that the crystal is maintained by attractive cation...Cl− dimers. The vibrational absorption bands were identified by IR spectroscopy.

2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


2000 ◽  
Vol 55 (6) ◽  
pp. 495-498 ◽  
Author(s):  
Katerina E. Gubina ◽  
Vladimir A. Ovchynnikov ◽  
Vladimir M. Amirkhanov ◽  
Viktor V. Skopenkoa ◽  
Oleg V. Shishkinb

N,N′-Tetramethyl-N"-benzoylphosphoryltriamide (I) and dimorpholido-N-benzoylphosphorylamide (II), and their sodium salts Nal, Nall were synthesized and characterized by means of IR and 1H, 31P NMR spectroscopy. The structures of I, II were determined by X-ray diffraction: I monoclinic, space group P2i/c with a = 10.162(3), b= 11.469(4), c = 12.286(4) Å , β = 94.04°, V = 1428.4(8) A 3, Z = 4, p(calcd) = 1.187 g/cm3; II monoclinic, space group C2/c with a = 15.503(4), b = 10.991(3), c = 22.000(6) Å, β = 106.39°, V = 3596.3(17) Å3, Z = 8, p(calcd.) = 1.253 g/cm3. The refinement of the structures converged at R = 0.0425 for I, and R = 0.068 for II. In both structures the molecules are connected into centrosymmetric dimers via hydrogen bonds formed by the phosphorylic oxygen atoms and hydrogen atoms of amide groups.


1995 ◽  
Vol 50 (4) ◽  
pp. 699-701 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Jürgen Riede ◽  
Klaus Angermaier ◽  
Hubert Schmidbaur

The solid-state structure of N,N-dibenzylhydroxylamine (1) has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P 21/n with four formula units in the unit cell. N,N-dibenzylhydroxylamine dimerizes to give N2O2H2 sixmembered rings as a result of the formation of two hydrogen bonds O - H ··· N in the solid state.


2000 ◽  
Vol 55 (5) ◽  
pp. 373-376 ◽  
Author(s):  
Andrey B. Lysenko ◽  
Oleg V. Shishkin ◽  
Rostislav D. Lampeka

The 1:1 complex of palladium(II) chloride with 2-(2-methyl-3-phenyl-isoxazolidin-5-yl)- pyridine (L) has been prepared and studied by means of elemental analysis, 1H NMR spectroscopy and X-ray diffraction (monoclinic, space group P21/n with parameters: a = 8.141(2), b = 9.750(2),c = 20.691(6)Å ,β = 95.62(3)°,V = 1634.4(7)Å3 ,Z = 4 ;R1= 0.054 and wR2= 0.144 for 3352 unique reflections). A square-planar coordination polyhedron has been established for the palladium atom both in acetone solution and in the solid state. The organic ligand is coordinated toometal in a bidentate manner via nitrogen atoms of the pyridine substituent (Pd-N(2) 2.125(3) Å) and the isoxazolidine heterocycle (Pd-N(l) 2.102(3) Å). The other two coordination positions of palladium are occupied by chlorine atoms (Pd-Cl(l) 2.321(1) and Pd-Cl(2) 2.333(1) Å). The six-membered chelate ring formed by Pd, N(2), C(4), C(1), 0(1) and N (1) possesses a “twist-tub” conformation. The isoxazolidine cycle has an envelope conformation with an equatorial orientation of the methyl group.


Author(s):  
A. A. Vasilyeva ◽  
T. Yu. Glazunova ◽  
D. S. Tereshchenko ◽  
E. Kh. Lermontova

Objectives. The study was devoted to considering the features of the synthesis and crystal structure of calcium trifluoroacetate Ca2(CF3COO)4·8CF3COOH and investigating the products of its thermal behavior.Methods. The compositions of the proposed structural form were characterized by various physicochemical methods (X-ray diffraction, IR spectroscopy), and the products of thermal decomposition were determined under dynamic vacuum conditions.Results. The reaction between calcium carbonate and 99% trifluoroacetic acid yielded a new structural type of calcium trifluoroacetate Ca2(CF3COO)4·8CF3COOH (I) in the form of colorless prismatic crystals unstable air. X-ray diffraction results confirmed the composition I: space group P21, with unit cell parameters: a = 10.0193(5) Å, b = 15.2612(7) Å, c = 16.3342(8) Å, β = 106.106(2)°, V = 2399.6(2) Å3, Z = 2. The structure is molecular, constructed from Ca2(CF3COO)4·8CF3COOH dimers. The end molecules of the trifluoroacetic acid were involved in the formation of intramolecular hydrogen bonds with oxygen atoms of the bidentate bridging anions CF3COO−. There were strongly pronouncedsymmetric and asymmetric absorption bands of COO and CF3-groups in the IR spectrum of the resulting compound in the range of 1200–1800 cm−1. The definite peak of the oscillation of the OH-group at 3683 cm−1 corresponds to the trifluoroacetic acid molecules present in the structure. The broadpeak of the valence oscillations in the range of 3300–3500 cm−1 is caused by the presence of intramolecular hydrogen bonds. Decomposition began at 250°C and 10−2 mm Hg with calcium fluoride CaF2 as the final decomposition product.Conclusions. We obtained a previously undescribed calcium–trifluoroacetic acid complex whose composition can be represented by Ca2(CF3COO)4·8CF3COOH. The crystal island structure is a dimeric molecule where the calcium atoms are bound into dimers by four trifluoroacetate groups. The complex was deposited in the Cambridge Structural Data Bank with a deposit number CCDC 2081186. Although the compound has a molecular structure, thermal decomposition leads to the formation of calcium fluoride characterized by a small particle size, which may further determine its applications.


Author(s):  
Shuichao Dong ◽  
Yaqiu Tao ◽  
Xiaodong Shen ◽  
Zhigang Pan

A new polymorph of bis(2-aminopyridinium) fumarate–fumaric acid (1/1), 2C5H7N2+·C4H2O42−·C4H4O4, was obtained and its crystal structure determined by powder X-ray diffraction. The new polymorph (form II) crystallizes in the triclinic system (space groupP\overline{1}), while the previous reported polymorph [form I; Ballabh, Trivedi, Dastidar & Suresh (2002).CrystEngComm,4, 135–142; Büyükgüngör, Odabaşoğlu, Albayrak & Lönnecke (2004).Acta Cryst.C60, o470–o472] is monoclinic (space groupP21/c). In both forms I and II, the asymmetric unit consists of one 2-aminopyridinium cation, half a fumaric acid molecule and half a fumarate dianion. The fumarate dianion is involved in hydrogen bonding with two neighbouring 2-aminopyridinium cations to form a hydrogen-bonded trimer in both forms. In form II, the hydrogen-bonded trimers are interlinked across centres of inversionviapairs of N—H...O hydrogen bonds, whereas such trimers are joinedviasingle N—H...O hydrogen bonds in form I, leading to different packing modes for forms I and II. The results demonstrate the relevance and application of the powder diffraction method in the study of polymorphism of organic molecular materials.


2011 ◽  
Vol 366 ◽  
pp. 392-395
Author(s):  
Xi Shi Tai

A Cu (II) complex has been obtained by one-pot reaction of copper nitrate with 4-aminobenzene sulfonic acid, 2-acetylpyridine and sodium hydroxide. Unfortunately, the complex does not contain 2-acetylpyridine molecules, and 4-aminobenzene sulfonic acid coordinate to Cu (II) ion. The structure of Cu (II) complex was characterized by single-crystal X-ray diffraction. The results show that the complex crystallizes in monoclinic, space group P2(1)/n with a = 0.7437(3) nm, b = 1.7408(6) nm, c = 0.7644(3) nm, V = 0.8846(5) nm3, Z = 2, F (000) = 494, Rint = 0.0697, and the complex formed two dimensional layered structure through intramolecule and intermolecule hydrogen bonds and π-π stacking interaction.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Hakan Bülbül ◽  
Yavuz Köysal ◽  
Necmi Dege ◽  
Sümeyye Gümüş ◽  
Erbil Ağar

The compound N-(1,3-dioxoisoindolin-2yl)benzamide, C15H10N2O3, was prepared by the heating of an ethanolic solution of 2-hydroxy-1H-isoindole-1,3(2H)-dione and 4-chloroaniline. The product was characterised using a combination of IR spectroscopy, SEM, and single crystal X-ray diffraction techniques. In addition to the experimental analysis, theoretical calculations were used to investigate the crystal structure in order to compare experimental and theoretical values. The X-ray diffraction analysis shows that the compound crystallises in the monoclinic space group P21/c with the geometric parameters of a=13.5324(11) Å, b=9.8982(8) Å, c=9.7080(8) Å, and β=95.425(6)°. The crystal structure is held together by a network of N-H⋯O hydrogen bonds involving the carboxamide group.


1989 ◽  
Vol 44 (8) ◽  
pp. 946-950 ◽  
Author(s):  
Pilar Souza ◽  
Agueda Arquero ◽  
Azucena García-Onrubia ◽  
Vicente Fernández ◽  
Ana María Leiva ◽  
...  

The title compound 1 was obtained by the reaction of CuBr2 and thiobenzamide in methanol. Its magnetic susceptibility and its EPR spectrum show it to be a Cu(II) compound. The two different ligands PhCSNH2 (2) and [PhCSNH]- (3) show up by distinct absorption bands in the IR spectrum. The crystal structure of 1 was determined by X-ray diffraction (1289 observed, unique reflexions, R = 0.048). Crystal data: monoclinic, space group P21/n, Z = 2, a = 912.0(2), b = 1859.7(8), c = 1006.2(6) pm, β = 110.73(4)°. There are dimeric, centrosymmetric molecules in which the copper atoms are linked via the sulfur atoms of either 2 or 3, probably 3. The copper atoms show the coordination of a flattened tetrahedron.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Adriana Šturcová

Abstract This contribution attempts to describe the path towards determination of cellulose crystal structure down to atomic coordinates, towards the determination of its molecular conformation, as well as towards the details of the intricate pattern of hydrogen bonds and their dynamics. This path started at the beginning of the 20th century with X-ray diffraction, continued with electron diffraction, infrared and Raman spectroscopy, and significant knowledge was gained by methods of NMR spectroscopy. Towards the end of the 20th century and at the beginning of the 21st century, X-ray diffraction in conjunction with neutron diffraction provided the position of hydrogens, which led to detailed description of the geometry of hydrogen bonding network in cellulose. Quantum chemical and molecular dynamics calculations, polarized infrared spectroscopy and sum frequency generation vibrational spectroscopy were used to identify the origins of the vibrational modes in cellulose and to describe their extensive coupling mediated by hydrogen bonds. The role of amphiphilic character of cellulose macromolecule (and consequent hydrophobic interactions) in cellulose properties and behavior has been gaining more recognition in the 21st century.


Sign in / Sign up

Export Citation Format

Share Document