Structural and enhanced hydrogen storage properties of the Li12Mg3Si3Al phase

2021 ◽  
Vol 77 (5) ◽  
pp. 227-234
Author(s):  
Volodymyr Pavlyuk ◽  
Wojciech Ciesielski ◽  
Damian Kulawik ◽  
Nazar Pavlyuk ◽  
Grygoriy Dmytriv

The multicomponent alumosilicide Li12Mg3Si3Al (cubic, space group I\overline{4}3d, cI76) belongs to the structural family based on the Cu15Si4 type. The Li atoms are ordered and occupy the site with symmetry 1 and the Mg atoms occupy the site with \overline{4}.. symmetry. The Si/Al statistical mixture occupies the site with .3. symmetry. The coordination polyhedra around the Li atoms are 13-vertex distorted pseudo-Frank–Kasper polyhedra. The environments of the Mg and Si/Al atoms are icosahedral. The hydrogen storage characteristics of Li12Mg3Si3Al were investigated. The reversible hydrogen storage capacity of the title compound is excellent and the gravimetric storage capacity of this new material, corresponding to 9.1 wt% H2, is higher compared to Li12Mg3Si4 (8.8 wt%). The enthalpy of hydrogen desorption is 86 kJ mol−1 and is lower compared to known lithium-based hydrides.

2021 ◽  
Vol 21 (8) ◽  
pp. 4353-4361
Author(s):  
Myoung Youp Song ◽  
Seong Ho Lee ◽  
Young Jun Kwak ◽  
Eunho Choi

TiCl3 was chosen as an additive to increase hydriding and dehydriding rates of Mg. In our previous works, we found that the optimum percentage of additives that improved the hydriding and dehydriding features of Mg was approximately ten. Specimens consisting of 90 wt% Mg and 10 wt% TiCl3 (named Mg–10TiCl3) were prepared by high-energy ball milling in hydrogen. The specimens’ hydriding and dehydriding properties were then studied. Mg–10TiCl3 had an effective hydrogenstorage capacity (the quantity of hydrogen absorbed in 60 min) of approximately 7.2 wt% at 593 K under 12 bar H2 at the second cycle. After high-energy ball milling in hydrogen, Mg–10TiCl3 contained Mg, β-MgH2, and small amounts of γ-MgH2 and TiH1.924. TiH1.924 remained undercomposed even after dehydriding at 623 K in a vacuum for 2 h. The hydriding and dehydriding properties of Mg–10TiCl3 were compared with those of other specimens such as Mg–10Fe2O3, Mg–10NbF5, and Mg–5Fe2O3–5Ni, for which the hydrogen-storage properties were previously reported.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1574
Author(s):  
Ruochen Shen ◽  
Chaohui Pu ◽  
Xiaoou Xu ◽  
Youpeng Xu ◽  
Zhilin Li ◽  
...  

The research aims to study the effect of adding mischmetal (Mm) to the TiFe0.86Mn0.07Co0.07 alloy on its hydrogen storage performance and cyclic stability. The results show that TiFe0.86Mn0.07Co0.07 + x% Mm (x = 0,4,6,8) alloys can be easily activated. The hydrogen absorption capacity of TiFe0.86Mn0.07Co0.07 + 4% Mm reaches 1.76 wt% (mass fraction) at 298 K. With the increase of Mm addition, the hydrogen storage capacity decreases slightly. Furthermore, after 40 absorption and desorption cycles in hydrogen containing 250 ppm O2, the alloy still has 36% of its initial hydrogen storage capacity, and the alloy can recover 93% of its hydrogen storage capacity through heat treatment.


2010 ◽  
Vol 156-157 ◽  
pp. 1146-1150
Author(s):  
Zhi Qiang Lan ◽  
Shu Bo Li ◽  
Zhao Lu ◽  
Jin Guo

Mg76Ti12Ni12-xCrx(x=0,3,6,9) alloys were synthesized by mechanical alloying(MA) approach and hydrogen storage properties of the alloys were investigated by X-ray diffraction, thermal analysis and pressure-composition isotherm measurement. It is found that Ti2Ni phase and Mg2Ni phase exist as the main phases in Mg76Ti12Ni12-xCrx(x=0,3,6,9) alloys. The Mg76Ti12Ni12-xCrx(x=0,3,6,9) alloys exhibit the hydrogen storage capacity of 4.61,4.30,4.21 and 4.12wt%, and the decomposition enthalpies of the alloy hydrides are 928.4, 898.3, 831.2 and 851.4J/g H2, respectively. Mg76Ti12Ni6Cr6 alloy shows small hysteresis and fast hydrogen absorption rate. Proper Cr content can improve the performance of the Mg76Ti12Ni12-xCrx(x =0,3,6,9) alloys.


2001 ◽  
Vol 704 ◽  
Author(s):  
Jeremy Lawrence ◽  
Gu Xu

AbstractSafe, lightweight, and cost-effective materials are required to practically store hydrogen for use in portable fuel cell applications. Compressed hydrogen and on-board hydrocarbon reforming present certain advantages, but their limitations must ultimately render them insufficient. Storage in hydrides and adsorption systems show promise in models and experimentation, but a practical medium remains unavailable. To study hydrogen storage properties a new volumetric testing apparatus was designed and constructed. Adsorption conditions are evaluated up to pressures exceeding 250 bar and a broad range of temperatures. RF sputtering was used to introduce metals to carbon nanotubes with the aim to enhance hydrogen storage. Here we show a significant improvement in the gravimetric storage density over that of as-prepared single-wall nanotube samples that may be due to the unique interface introduced.


MRS Advances ◽  
2020 ◽  
Vol 5 (20) ◽  
pp. 1059-1069
Author(s):  
Ntumba Lobo ◽  
Alicja Klimkowicz ◽  
Akito Takasaki

AbstractMagnesium hydride (MgH2) is a prospective material for the storage of hydrogen in solid materials. It can also be envisaged for thermal energy storage applications since it has the potential to reversibly absorb hydrogen in large quantities, theoretically up to 7.6% by weight. Also, MgH2 is inexpensive, abundant, and environmentally friendly, but it operates at relatively high temperatures, and the kinetics of the hydrogenation process is slow. Mechanical milling and the addition of catalyst can alter the activation energy and the kinetic properties of the MgH2 phase. It is known that the addition of titanium hydride (TiH2) lowers the enthalpy and enhances the absorption of hydrogen from MgH2, titanium oxide (TiO2) enhances the desorption of hydrogen and niobium oxide (Nb2O5) enhances the absorption of hydrogen. In this work, the influences of the catalysts, as mentioned above on the properties of MgH2, were studied. The samples were analyzed in terms of crystal and microstructure as well as hydrogen storage properties using a pressure-composition isotherm (PCT)measurement. It has been found that the simultaneous addition of the three catalysts enhances the properties of MgH2, lowers the activation energy and operating temperature, increases the rate of intake and release of hydrogen, and provides the largest gravimetric hydrogen storage capacity.


2016 ◽  
Vol 847 ◽  
pp. 3-7 ◽  
Author(s):  
Gang Fu ◽  
Feng Wang ◽  
Jiang Wang ◽  
Mao Hua Rong ◽  
Zhong Min Wang ◽  
...  

Microstructure, hydrogen storage properties and thermal stabilities of V-Ti-Fe alloys prepared by arc-melting were studied in this work. It was confirmed that V60Ti30Fe10, V70Ti20Fe10 and V80Ti10Fe10 alloys are a body-centered cubic (bcc) single phase, while V75Ti10Fe15 alloy consists of the bcc main phase and C14-typed Laves secondary phase. Experimental results show that the V80Ti10Fe10 alloy reached the largest hydrogen absorption capacities which were about 1.9 wt.% and 1.62 wt.% at 423 K and 473 K, while V75Ti10Fe15 alloy with C14-typed Laves phase showed better hydrogen desorption capacities with 1.31 wt.% at 423 K and 1.35 wt.% at 473 K, respectively. In addition, the DSC measurements indicate that the thermal stability of V75Ti10Fe15 alloy with C14-typed Laves phase decreased, which is very beneficial to the improvement of dehydrogenation rate in the alloy.


2014 ◽  
Vol 898 ◽  
pp. 93-97 ◽  
Author(s):  
Zhi Qiang Lan ◽  
Song Liu ◽  
Shu Bo Li ◽  
Wen Lou Wei ◽  
Jin Guo

A LiNH2/MgH2 (1:1) complex was prepared by mechanical alloying and the effects of Ti and TiF3 on the characteristics of hydrogen storage were investigated. It was found that LiMgN and Li2NH phases exist as the main phases in the LiNH2/MgH2 (1:1) complex and that Mg (NH2)2 and NH4HF2 phases appear when TiF3 is added. The onset temperature of hydrogen desorption was reduced with increasing mill time, and the hydrogen saturation absorption temperature for the LiNH2/MgH2 complex decreased about 30°C with the addition of Ti and TiF3. Ti and TiF3 as catalysts are favorable for reducing the dehydrogenation temperature. The addition of TiF3 can also facilitate the increase of hydrogen desorption for the LiNH2/MgH2 (1:1) complex.


2019 ◽  
Vol 7 (10) ◽  
pp. 5277-5287 ◽  
Author(s):  
Meijia Liu ◽  
Xuezhang Xiao ◽  
Shuchun Zhao ◽  
Man Chen ◽  
Jianfeng Mao ◽  
...  

Catalytic doping is important for enhancing the hydrogen storage performance of metal hydrides, but it is challenging to develop a single catalyst to enhance both hydrogen desorption and absorption to a certain degree.


2007 ◽  
Vol 561-565 ◽  
pp. 1609-1612 ◽  
Author(s):  
Ryota Mori ◽  
Hiroshi Miyamura ◽  
Shiomi Kikuchi ◽  
Koji Tanaka ◽  
Nobuhiko Takeichi ◽  
...  

In order to improve the hydrogenation property of Mg/Ti laminate composite, Ni was added as a third element. Hydrogen storage properties of the laminated Mg/Ti/Ni alloy films were studied. Laminated Mg/Ti/Ni multilayer alloy films were prepared by cold rolling of stacked Mg, Ti and Ni under ambient conditions. The stacked foils were subjected to repetition of rolling and stacking, resulting in super-laminated foils with the thickness less than 0.3mm, containing more than 15000 layers. Microstructures of the super-laminates were studied by scanning electron microscopy and X-ray diffractometry. Their hydrogenation behaviors were investigated by use of a Sieverts type apparatus. The hydrogen storage capacity (H/M) of the laminate with composition Mg/Ti/Ni=9.0/0.9/0.1 amounted H/M=1.6 at 573K, 0.4MPa. Initial activation property was improved by controlling the amount of Ni appropreately.


2006 ◽  
Vol 971 ◽  
Author(s):  
Yasuhiro Munekata ◽  
Kota Washio ◽  
Takanori Suda ◽  
Naoyuki Hashimoto ◽  
Somei Ohnuki ◽  
...  

ABSTRACTOne of impotent materials issues of Ti-Cr-V based hydrogen storage alloys is to improve cyclic degradation of storage capacity, which has been assumed to be the effect of internal stress. We focused on the sub-micron structure of this material, which can be accumulated during cyclic use. We used 24Ti-36Cr-40V alloy for the specimens, after FZ melting. Powered samples were fabricated by mechanical grinding under Ar environment. Vacuum annealing was carried out for reducing residual stress and lattice defects. PCT properties were tested at 293 K under 4.5 MPa. XRD and TEM were carried out for important samples. In the first cycle, the annealing resulted in the increasing of storage capacity, but in the second cycle the improving was disappeared. Comparing microstructures with and without annealing, complex dislocation structures were observed after cyclic hydrogenation. It is notable that dislocation free structure was some time observed in the fine grains of less than 0.1 micron, which suggests the possibility of fine structure without defect accumulation.


Sign in / Sign up

Export Citation Format

Share Document