scholarly journals High-resolution crystal structures of two crystal forms of human cyclophilin D in complex with PEG 400 molecules

Author(s):  
Koteswara Rao Valasani ◽  
Emily A. Carlson ◽  
Kevin P. Battaile ◽  
Andrea Bisson ◽  
Chunyu Wang ◽  
...  

Cyclophilin D (CypD) is a key mitochondrial target for amyloid-β-induced mitochondrial and synaptic dysfunction and is considered a potential drug target for Alzheimer's disease. The high-resolution crystal structures of primitive orthorhombic (CypD-o) and primitive tetragonal (CypD-t) forms have been determined to 1.45 and 0.85 Å resolution, respectively, and are nearly identical structurally. Although an isomorphous structure of CypD-t has previously been reported, the structure reported here was determined at atomic resolution, while CypD-o represents a new crystal form for this protein. In addition, each crystal form contains a PEG 400 molecule bound to the same region along with a second PEG 400 site in CypD-t which occupies the cyclosporine A inhibitor binding site of CypD. Highly precise structural information for CypD should be extremely useful for discerning the detailed interaction of small molecules, particularly drugs and/or inhibitors, bound to CypD. The 0.85 Å resolution structure of CypD-t is the highest to date for any CypD structure.

Author(s):  
Shukun Luo ◽  
Ke Xu ◽  
Shaoyun Xiang ◽  
Jie Chen ◽  
Chunyun Chen ◽  
...  

Human indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-dependent enzyme with important roles in many cellular processes and is a potential target for drug discovery against cancer and other diseases. Crystal structures of IDO1 in complex with various inhibitors have been reported. Many of these crystals belong to the same crystal form and most of the reported structures have resolutions in the range 3.2–2.3 Å. Here, three new crystal forms of human IDO1 obtained by introducing a surface mutation, K116A/K117A, distant from the active site are reported. One of these crystal forms diffracted to 1.5 Å resolution and can be readily used for soaking experiments to determine high-resolution structures of IDO1 in complex with the substrate tryptophan or inhibitors that coordinate the heme. In addition, this mutant was used to produce crystals of a complex with an inhibitor that targets the apo form of the enzyme under the same conditions; the structure of this complex was determined at 1.7 Å resolution. Overall, this mutant represents a robust platform for determining the structures of inhibitor and substrate complexes of IDO1 at high resolution.


2014 ◽  
Vol 70 (9) ◽  
pp. 1155-1161 ◽  
Author(s):  
Li-Kai Liu ◽  
Barry Finzel

Two new crystal structures of the extracellular hyaluronan-binding domain of human CD44 are described at high resolution. A hexagonal crystal form at 1.60 Å resolution and a monoclinic form at 1.08 Å resolution both have two molecules in the asymmetric unit arranged about a similar noncrystallographic twofold axis of symmetry. These structures are compared with those previously reported at 2.20 Å resolution to show that the fold is quite resistant to structural deformation in different crystal environments. Unexpectedly, a short peptide is found in the monoclinic crystals at a site remote from the known hyaluronan-binding groove. The peptide with a valine at the carboxy-terminus must have co-purified from the bacterial expression host and binds on the opposite side of the domain from the known hyaluronan-binding groove. This opportunistic binding may identify a site of interaction used as CD44 assembles with other proteins to accomplish effective signaling regarding changes to the extracellular environment.


2018 ◽  
Vol 115 (24) ◽  
pp. 6207-6212 ◽  
Author(s):  
Hongning Zheng ◽  
Cheng Lu ◽  
Jun Lan ◽  
Shilong Fan ◽  
Vikas Nanda ◽  
...  

One-quarter of the 28 types of natural collagen exist as heterotrimers. The oligomerization state of collagen affects the structure and mechanics of the extracellular matrix, providing essential cues to modulate biological and pathological processes. A lack of high-resolution structural information limits our mechanistic understanding of collagen heterospecific self-assembly. Here, the 1.77-Å resolution structure of a synthetic heterotrimer demonstrates the balance of intermolecular electrostatics and hydrogen bonding that affects collagen stability and heterospecificity of assembly. Atomistic simulations and mutagenesis based on the solved structure are used to explore the contributions of specific interactions to energetics. A predictive model of collagen stability and specificity is developed for engineering novel collagen structures.


Author(s):  
Jiabin Gao ◽  
Mohan M. Bhadbhade ◽  
Roger Bishop

Racemic 2,4,6,8-tetracarbomethoxybicyclo[3.3.0]octa-2,6-diene-3,7-diol, C16H18O10(1), was known previously to yield two solvent-free polymorphs and also a clathrate inclusion crystal form. Crystallization of (1) yields two inclusion compounds containing tetrahydrofuran (THF): (1)4·THF is obtained from a mixture of THF and methanol, whereas (1)2·THF is obtained from pure THF. The X-ray crystal structures reveal that the two compounds are extremely similar and that their host arrangements are essentially identical. They differ, however, in the proportion, orientation and host–guest interaction of the included THF molecules. The disordered guest molecules in (1)4·THF are oriented along the guest channel direction, whereas in (1)2·THF they lie across the channel. This unusual solvent–guest control of inclusion structures has implications relating to the formation of polymorphic structures and other competing crystal forms.


Author(s):  
M. E. Dumont ◽  
J. W. Wiggins ◽  
S. B. Hayward

We are using electron diffraction to characterize a platinum-containing derivative of bacteriorhodopsin, the light-driven proton pump from Halobacterium halobium. This has been undertaken with the dual aims of: 1)using the method of multiple heavy atom isomorphous replacement to obtain high resolution structural information about the protein, and 2)locating heavy atom labelled amino acids in the structure in order to correlate the recently determined sequence with the structural map. A necessary first step in such studies is the location of the heavy atoms in the low resolution structure. This report focusses on ways of dealing with the inherent statistical uncertainties encountered in this heavy atom localization.


2020 ◽  
Vol 56 (34) ◽  
pp. 4627-4639 ◽  
Author(s):  
Bikash R. Sahoo ◽  
Sarah J. Cox ◽  
Ayyalusamy Ramamoorthy

High-resolution structure elucidation of Alzheimer's amyloid-β oligomer is crucial to delineate its pathological phenotype. NMR provides atomic-resolution details of amyloid-β oligomer that could aid in the development of structure-based therapeutics.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Zhihai Li ◽  
Daning Wang ◽  
Ying Gu ◽  
Shuo Song ◽  
Maozhou He ◽  
...  

ABSTRACT Persistent, high-risk human papillomavirus (HPV) infection is the primary cause of cervical cancer. Neutralizing antibodies elicited by L1-only virus-like particles (VLPs) can block HPV infection; however, the lack of high-resolution structures has limited our understanding of the mode of virus infection and the requirement for type specificity at the molecular level. Here, we describe two antibodies, A12A3 and 28F10, that specifically bind to and neutralize HPV58 and HPV59, respectively, through two distinct binding stoichiometries. We show that the epitopes of A12A3 are clustered in the DE loops of two adjacent HPV58 L1 monomers, whereas 28F10 recognizes the HPV59 FG loop of a single monomer. Via structure-based mutagenesis and analysis of antibody binding, we further identified the residues HPV58 D154, S168, and N170 and HPV59 M267, Q270, E273, Y276, K278, and R283, which play critical roles in virus infection. By substituting these strategic epitope residues into other HPV genotypes, we could then redirect the type-specific binding of the antibodies to these genotypes, thus highlighting the importance of these specific residues, HPV58 R161, S168, and N308 and HPV59 Q270, E273, and D281. Overall, our findings provide molecular insights into potential structural determinants of HPV required for infectivity and type specificity. IMPORTANCE High-risk human papillomaviruses (HPVs) are considered the major causative pathogens of cancers that affect epithelial mucosa, such as cervical cancer. However, because of the lack of high-resolution structural information on the sites of neutralization, we have yet to determine the precise mode of HPV infection and how different types of HPV cause infection. Our crystal structures in this study have uncovered discrete binding stoichiometries for two different antibodies. We show that one A12A3 Fab binds to the center of one HPV58 pentamer, whereas five 28F10 Fabs bind along the top fringe of one HPV59 pentamer. Furthermore, through targeted epitope analysis, we show that 6 to 7 discontinuous residues of the L1 major capsid protein of HPV are determinants, at least in part, for virus infection and type specificity. This knowledge will help us to unravel the process of HPV infection and can potentially be used to drive the development of therapeutics that target neutralization-sensitive sites. IMPORTANCE High-risk human papillomaviruses (HPVs) are considered the major causative pathogens of cancers that affect epithelial mucosa, such as cervical cancer. However, because of the lack of high-resolution structural information on the sites of neutralization, we have yet to determine the precise mode of HPV infection and how different types of HPV cause infection. Our crystal structures in this study have uncovered discrete binding stoichiometries for two different antibodies. We show that one A12A3 Fab binds to the center of one HPV58 pentamer, whereas five 28F10 Fabs bind along the top fringe of one HPV59 pentamer. Furthermore, through targeted epitope analysis, we show that 6 to 7 discontinuous residues of the L1 major capsid protein of HPV are determinants, at least in part, for virus infection and type specificity. This knowledge will help us to unravel the process of HPV infection and can potentially be used to drive the development of therapeutics that target neutralization-sensitive sites.


2021 ◽  
Author(s):  
Akihiro Kawamoto ◽  
Tomohito Yamada ◽  
Toru Yoshida ◽  
Takayuki Kato ◽  
Hideaki Tsuge

Abstract Besides two large cytotoxins (TcdA and TcdB), certain Clostridioides difficile strains also produce a binary toxin, called C. difficile toxin (CDT) composed of an enzymatic subunit involved in actin ADP-ribosylation (CDTa) and translocation pore (CDTb) that delivers CDTa into host cells through receptor-mediated endocytosis. CDTb is proposed to be a di-heptamer, but its physiological heptameric structure has not been reported to date. Here, we report the CDTa-bound CDTb-pore (heptamer) as a physiological complexes using cryo-EM. The high-resolution structure of the CDTa-bound CDTb-pore at 2.56-Å resolution revealed that CDTa binding to CDTb-pore induces partial unfolding and tilting of the first CDTa a-helix, and the translocation. In the CDTb-pore, the NSS-loop exists in “in” and “out” conformations, suggesting their involvement in substrate translocation through formation of weak, non-specific interactions. This structural information provides insights into drug design against hypervirulent C. difficile strains.


2015 ◽  
Vol 71 (7) ◽  
pp. 1572-1581 ◽  
Author(s):  
Yu Hirano ◽  
Shigenobu Kimura ◽  
Taro Tamada

Mammalian microsomal cytochromeb5has multiple electron-transfer partners that function in various electron-transfer reactions. Four crystal structures of the solubilized haem-binding domain of cytochromeb5from porcine liver were determined at sub-angstrom resolution (0.76–0.95 Å) in two crystal forms for both the oxidized and reduced states. The high-resolution structures clearly displayed the electron density of H atoms in some amino-acid residues. Unrestrained refinement of bond lengths revealed that the protonation states of the haem propionate group may be involved in regulation of the haem redox properties. The haem Fe coordination geometry did not show significant differences between the oxidized and reduced structures. However, structural differences between the oxidized and reduced states were observed in the hydrogen-bond network around the axial ligand His68. The hydrogen-bond network could be involved in regulating the redox states of the haem group.


Sign in / Sign up

Export Citation Format

Share Document