scholarly journals Pressure-induced spin crossover in a Prussian Blue analogue

2014 ◽  
Vol 70 (a1) ◽  
pp. C154-C154 ◽  
Author(s):  
Gregory Halder ◽  
Karena Chapman ◽  
Peter Chupas ◽  
Antonio dos Santos

The structural and chemical versatility of functional molecular materials, such as molecular magnets and metal-organic frameworks (MOFs), underlie important technological, industrial, and environmental applications. The extensive structural complexities now well-documented for these systems are likely to be associated with unprecedented pressure-induced behavior compared with the traditional solid state materials more commonly explored under high pressure conditions.1 Furthermore, the typically open (low density, often porous) nature of these materials is likely to induce such phenomena at more moderate pressures, such as may be routinely encountered in practical applications.2,3 Here we report pressure-induced spin-state switching in the Prussian Blue analogue, FePt(CN)6, including in situ Synchrotron (17-BM, Advanced Photon Source) and Neutron (SNAP, Spallation Neutron Source) powder diffraction studies. Work done at Argonne and use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. Research at Oak Ridge National Laboratory's Spallation Neutron Source (SNS) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.

Author(s):  
M. A. Plum ◽  
S. M. Cousineau ◽  
J. Galambos ◽  
S. H. Kim ◽  
P. Ladd ◽  
...  

2015 ◽  
Vol 48 (4) ◽  
pp. 1302-1306 ◽  
Author(s):  
Leighton Coates ◽  
Matthew J. Cuneo ◽  
Matthew J. Frost ◽  
Junhong He ◽  
Kevin L. Weiss ◽  
...  

The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. The instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. The instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.


2020 ◽  
Vol 239 ◽  
pp. 14005
Author(s):  
Luiz Leal ◽  
Vaibhav Jaiswal ◽  
Alexander I. Kolesnikov

Series of light water inelastic neutron scattering experiments have been made at the Oak Ridge National Laboratory (ORNL), Spallation Neutron Source (SNS) covering temperatures ranging from 295 K to 600 K and pressures of 1 bar and 150 bar. The temperatures and pressures ranges correspond to that of pressurized light water reactors. The inelastic scattering measurements will help the development of light water thermal scattering kernels, also known as S (α,β) thermal scattering law (TSL), in a consistent fashion given the amount and the quality of the measured data. Light water thermal scattering evaluations available in existing nuclear data libraries have certain limitations and pitfalls. This paper introduces the state of the art of the light water thermal scattering cross-section data not only for room temperature but as well as for reactor operating temperatures, i.e. 550 - 600 K. During the past few years there has been a renewed interest in re-investigating the existing TSL models and utilize the recent experimental data or perform molecular dynamics simulations. It should be pointed out that no single TSL evaluation is based entirely on experimental data and one has to rely on TSL models or a combination of both. New TOF measurement of light water at the SNS, with a detailed description of the experimental setup, measurement conditions, and the associated foreseen results is presented in this paper. The analysis of the experimental data would help in validating the existing approach based on old experimental data or based on molecular dynamic simulations using classical water models, knowledge of which is very important to generate TSL libraries at reactor operating conditions.


2010 ◽  
Vol 43 (3) ◽  
pp. 570-577 ◽  
Author(s):  
L. Coates ◽  
A. D. Stoica ◽  
C. Hoffmann ◽  
J. Richards ◽  
R. Cooper

The macromolecular neutron diffractometer MaNDi is currently under construction at the first target station of the Spallation Neutron Source at Oak Ridge National Laboratory. This instrument will collect neutron diffraction data from small single crystals (0.1–1 mm3) with lattice constants between 100 and 300 Å, as well as data from less well ordered systems such as fibers. A focusing neutron guide has been designed to filter the high-energy neutron component of the spectrum and to provide a narrow beam with a wide spectral window and angular divergence almost insensitive to neutron wavelength. The system includes a final interchangeable section of neutron guide and two slits, which enable tuning of the horizontal and vertical beam divergence between 0.12 and 0.80° (full width at half-maximum) at the sample position. This allows the trading of intensity for resolution, depending on the scientific requirements. Efforts to enhance and develop suitable high-resolution neutron detectors at an affordable price are also discussed. Finally, the parameters of the neutron guide and detectors were used to simulate diffraction from a large unit cell.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 402 ◽  
Author(s):  
Hongyu Wang ◽  
Chaohai Wang ◽  
Junwen Qi ◽  
Yubo Yan ◽  
Ming Zhang ◽  
...  

Prussian blue and its analogues (PBA) based nanomaterials have been widely applied to removing pollutants in the recent years. However, easy aggregation and poor recycling largely limit their practical applications. In this work, spiderweb-like Fe-Co Prussian blue analogue/polyacrylonitrile (FCPBA/PAN) nanofibers were prepared by electrospinning and applied to degrading bisphenol-A (BPA) by activating peroxymonosulfate (PMS). Detailed characterization demonstrated that a high loading of FCPBA (86% of FCPBA in FCPBA/PAN) was successfully fixed on the PAN nanofibers. 67% of BPA was removed within 240 min when 500 mg·L−1 PMS and 233 mg·L−1 FCPBA/PAN were introduced in 20 mg·L−1 BPA solution at initial pH of 2.8. Electron paramagnetic resonance (EPR) and radical inhibition experiments were performed to identify the possible degradation mechanism. For comparison, a low loading of FCPBA nanofibers (0.6FCPBA/PAN nanofibers, 43% of FCPBA in FCPBA/PAN) were also prepared and tested the catalytic performance. The results showed that the activity of FCPBA/PAN was much higher than 0.6FCPBA/PAN. Furthermore, a FCPBA/PAN packed column was made as a reactor to demonstrate the reusability and stability of FCPBA/PAN nanofibers, which also exhibited the bright future for the industrial application. This work makes it possible to fabricate efficient PBA nanocatalysts with excellent recyclability and promotes the application of PBA in industrial areas.


Sign in / Sign up

Export Citation Format

Share Document