Coating thickness measurement of thin gold and palladium coatings on printed circuit boards using X‐ray fluorescence

Circuit World ◽  
2011 ◽  
Vol 37 (2) ◽  
pp. 20-26 ◽  
Author(s):  
Simone Dill ◽  
Volker Rößiger
1979 ◽  
Vol 8 (1) ◽  
pp. 11-13 ◽  
Author(s):  
S. K. Jain ◽  
P. P. Gupta ◽  
A. C. Eapen

Author(s):  
Daren T. Slee

Abstract This paper is a review of propagating faults in printed circuit boards (PCBs) from the perspective of using the resulting burn and melted copper patterns to identify likely locations of fault initiation. Visual examination and x-ray imaging are the main techniques for examining PCB propagating faults. Once the likely fault initiation location has been identified, fault tree analysis can be used to determine the root cause for fault initiation. The paper discusses the mechanisms by which PCB propagating faults occur. The method of determining the likely area of initiation of the fault using visual examination of the PCB burn pattern, x-ray imaging, and the layout artwork for the PCB is discussed. The paper then goes on to discuss possible root-causes for the initiation of PCB propagating faults and some of their considerations.


Author(s):  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Mark Tehranipoor ◽  
Domenic Forte

Abstract Reverse engineering of electronics systems is performed for various reasons ranging from honest ones such as failure analysis, fault isolation, trustworthiness verification, obsolescence management, etc. to dishonest ones such as cloning, counterfeiting, identification of vulnerabilities, development of attacks, etc. Regardless of the goal, it is imperative that the research community understands the requirements, complexities, and limitations of reverse engineering. Until recently, the reverse engineering was considered as destructive, time consuming, and prohibitively expensive, thereby restricting its application to a few remote cases. However, the advents of advanced characterization and imaging tools and software have counteracted this point of view. In this paper, we show how X-ray micro-tomography imaging can be combined with advanced 3D image processing and analysis to facilitate the automation of reverse engineering, and thereby lowering the associated time and cost. In this paper, we demonstrate our proposed process on two different printed circuit boards (PCBs). The first PCB is a four-layer custom designed board while the latter is a more complex commercial system. Lessons learned from this effort can be used to both develop advanced countermeasures and establish a more efficient workflow for instances where reverse engineering is deemed necessary. Keywords: Printed circuit boards, non-destructive imaging, X-ray tomography, reverse engineering.


Author(s):  
Daechul Choi ◽  
Sooyoung Ji ◽  
Jaelim Choi ◽  
Miyang Kim ◽  
Eunju Yang ◽  
...  

Abstract In this paper, we demonstrate a case for non-destructive detection of submicron wide via-crack in printed circuit boards (PCBs) by using in-situ thermal chamber 3D x-ray computed tomography. The defect location is verified by a PFA (Physical Failure Analysis), and good agreement was made. This fault isolation method is proposed as a possible solution for identifying submicron cracks in PCB substrates during challenging investigations.


2018 ◽  
Vol 143 ◽  
pp. 04007
Author(s):  
Anton Azin ◽  
Andrey Zhukov ◽  
Anton Narikovich ◽  
Sergey Ponomarev ◽  
Sergey Rikkonen ◽  
...  

The implementation of the Smart City system needs reliable and smoothly operating electronic equipment. The study is aimed at developing a nondestructive testing method for electronic equipment and its components. This method can be used to identify critical design defects of printed circuit boards (PCB) and to predict their service life, taking into account the nature of probable operating loads. The study uses an acoustic emission method to identify and localize critical design defects of printed circuit boards. Geometric dimensions of detected critical defects can be determined by the X-ray tomography method. Based on the results of the study, a method combining acoustic emission and X-ray tomography was developed for nondestructive testing of printed circuit boards. The stress-strain state of solder joints containing detected defects was analyzed. This paper gives an example of using the developed method for estimating the degree of damage to joints between PCB components and predicting the service life of the entire PCB.


Sign in / Sign up

Export Citation Format

Share Document