The corrosion behavior of compositional modified AISI type 304L stainless steel for nitric acid application

2019 ◽  
Vol 66 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Gopinath Shit ◽  
S. Ningshen

Purpose High corrosion resistance in different concentrations of nitric acid is essential for structural steels to be used for the aqueous reprocessing of spent nuclear fuels with high plutonium content. Design/methodology/approach In the present study, the corrosion resistance of type 304L stainless steel (SS) with modified composition was evaluated in different concentrations of nitric acid using surface analytical techniques, weight loss method and electrochemical measurements. Findings Weight loss measurement in boiling 65 per cent nitric acid showed a low corrosion rate value of about 0.2 mm/y (8 mpy) after 240 h exposure. Electrochemical measurements revealed the shift in open circuit potentials as well as corrosion potential toward more noble direction, and the results of electrochemical impedance spectroscopy studies indicated the reduction in the thickness and stability of the passive film with increasing concentration from 6 to 11.5 M nitric acid. Research limitations/implications The low corrosion rate observed for this steel is attributed to the higher content of Cr (19 per cent), Ni (10 per cent) and Si (0.3 per cent) and controlled minor alloying elements (S, P, B, C, etc.) in the alloy that contributed to improving the transpassive corrosion resistance and minimizing the intergranular corrosion attack. The X-ray photoelectron spectroscopic analysis revealed the composition of the passive films to be mainly of iron and chromium oxides. Practical implications Materials with lower corrosion rates are desirable for applications in nitric acid. Social implications The used of nitric acid creates a severe corrosive environment in chemical or aqueous nuclear reprocessing plants, and hence with a modified composition of type 304L SS resulting in minimizing failure of components are desirable for reducing cost and maintenance. Originality/value The present paper is an original work carried out by the authors on the corrosion resistance behaviors of composition modified AISI type 304L SS for nitric acid application. The effects of different nitric acid concentrations were compared to provide understanding on in applicability in boiling and high nitric acid concentrations.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
G. Salinas ◽  
J. G. Gonzalez-Rodriguez ◽  
J. Porcayo-Calderon ◽  
V. M. Salinas-Bravo ◽  
M. A. Espinoza-Medina

The hot corrosion behavior of Fe40Al intermetallic alloyed with Ag, Cu, Li, and Ni (1–5 at.%) in NaCl-KCl (1 : 1 M) at 670°C, typical of waste gasification environments, has been evaluated by using polarization curves and weight loss techniques and compared with a 304-type stainless steel. Both gravimetric and electrochemical techniques showed that all different Fe40Al-base alloys have a much higher corrosion resistance than that for stainless steel. Among the different Fe40Al-based alloys, the corrosion rate was very similar among each other, but it was evident that the addition of Li decreased their corrosion rate whereas all the other elements increased it. Results have been explained in terms of the formation and stability of an external, protective Al2O3layer.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guanghui Yi ◽  
Dajiang Zheng ◽  
Guang-Ling Song

Purpose The purpose of this paper is to address the concern of some stainless steel users. To understand the effect of surface white spots on corrosion performance of stainless steel. Design/methodology/approach White spots appeared on some component surfaces made of 316 L stainless steel in some industrial applications. To address the concern about the pitting performance in the spot areas, the pitting corrosion potential and corrosion resistance were measured in the spot and non-spot areas by means of potentiodynamic polarization and electrochemical impedance spectroscopy and the two different surface characteristics were analytically compared by using optical microscopy, laser confocal microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive spectroscopy and auger energy spectroscopy. The results indicated that the pitting performance of the 316 L stainless steel was not negatively influenced by the spots and the white spots simply resulted from the slightly different surface morphology in the spot areas. Findings The white spots are actually the slightly rougher surface areas with some carbon-containing species. They do not reduce the pitting resistance. Interestingly, the white spot areas even have slightly improved general corrosion resistance. Research limitations/implications Not all surface contamination or roughening can adversely affect the corrosion resistance of stainless steel. Practical implications Stainless steel components with such surface white spots are still qualified products in terms of corrosion performance. Originality/value The surface spot of stainless steel was systematically investigated for the first time for its effect on corrosion resistance and the conclusion was new to the common knowledge.


Alloy Digest ◽  
1997 ◽  
Vol 46 (11) ◽  

Abstract Project 70 and Project 7000 Type 304L stainless steels are improved machining versions of conventional AISI Type 304L stainless steel. They have higher tensile and creep strengths than conventional 18-8 stainless steels. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-513. Producer or source: Carpenter. Originally published July 1990, revised November 1997.


Alloy Digest ◽  
2006 ◽  
Vol 55 (10) ◽  

Abstract Maxival MVAISL is an enhanced-machining version of AISI Type 304L stainless steel. The alloy has a specified inclusion picture to enhance machining by modifying both sulfide and oxide inclusions. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming and machining. Filing Code: SS-978. Producer or source: Valbruna Stainless Inc.


2016 ◽  
Vol 858 ◽  
pp. 196-201
Author(s):  
Viera Zatkalíková ◽  
Lenka Markovičová

Austenitic stainless steels are considered materials with excellent corrosion resistance, and with acceptable mechanical properties. Therefore they are recommended for various constructional, industrial and biomedical applications. However they are prone to the pitting corrosion in aggressive chloride environments. The aim of this study is to evaluate the corrosion resistance of AISI 316Ti stainless steel with nitric acid passivated surface at the temperature range 22 – 80 °C in 1M acidic chloride solution. Evaluation of the corrosion resistance is based on the results of exposition immersion tests (visual and microscopic observation of attacked surfaces, mass losses of specimens) and the results of the electrochemical impedance spectroscopy (EIS) tests.


2013 ◽  
Vol 794 ◽  
pp. 575-582 ◽  
Author(s):  
S. Ningshen ◽  
M. Sakairi ◽  
K. Sukuki ◽  
S. Ukai

An oxide dispersion strengthened steels are one of the most promising high temperatures, and high performance advanced structural material being developed for future fast reactors and high-temperature Generation IV reactors. In the present work, the corrosion resistance and its correlation with the passive film compositions of 11% Cr F/M and 9-15% Cr (with Zr or Hf) ODS steels is examined and compared with AISI type 304L stainless steel in boiling 60 - 62% (~13 M) HNO3. The corrosion rate measured in 62% HNO3 for 240 h of 11% Cr F/M, 9% Cr and 15% Cr (Zr) ODS steels show high corrosion rate. On the other hand, low corrosion rate was observed in 304L stainless steel (0. 21 to 23 mm y-1). However, severe intergranular corrosion attack was revealed in type 304L SS after 240 h exposure, but none in ODS steels. Such an intergranular corrosion attack seen in type 304L stainless steel is undesirable. On the contrary, low corrosion rate (0.04 0.15 mm y-1) of 15% Cr (Hf) ODS steel in 3 M, 6 M and 9 M HNO3, comparable to that of type 304L stainless steel was observed. The improved corrosion resistance of 15% Cr (Hf) ODS steel was attributed to enrich (20 at. %) and protective Al2O3 layer formation in addition to Cr2O3 in the passive film.


2014 ◽  
Vol 556-562 ◽  
pp. 162-165 ◽  
Author(s):  
Shi Dong Zhu ◽  
Hai Xia Ma ◽  
Jin Ling Li ◽  
Zhi Gang Yang

Effects of elemental sulfur on corrosion behavior of super 13Cr martensitic stainless steel were investigated by utilizing weight loss test, and the micro morphologies and chemical elements of corrosion scales were characterized by using SEM and EDS. The results showed that corrosion resistance of super 13Cr stainless steel was aggravated by the hydrolytic action of sulfur, the corrosion rate of super 13Cr stainless steel increased with the increasing of sulfur content, and firstly increased and then decreased with the increasing of temperature due to the activated adsorption and existential state of sulfur at the different temperatures.


2011 ◽  
Vol 53 (1) ◽  
pp. 64-70 ◽  
Author(s):  
S. Ningshen ◽  
U. Kamachi Mudali ◽  
S. Ramya ◽  
Baldev Raj

Sign in / Sign up

Export Citation Format

Share Document