Surface white spot and pitting corrosion of 316 L stainless steel

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guanghui Yi ◽  
Dajiang Zheng ◽  
Guang-Ling Song

Purpose The purpose of this paper is to address the concern of some stainless steel users. To understand the effect of surface white spots on corrosion performance of stainless steel. Design/methodology/approach White spots appeared on some component surfaces made of 316 L stainless steel in some industrial applications. To address the concern about the pitting performance in the spot areas, the pitting corrosion potential and corrosion resistance were measured in the spot and non-spot areas by means of potentiodynamic polarization and electrochemical impedance spectroscopy and the two different surface characteristics were analytically compared by using optical microscopy, laser confocal microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive spectroscopy and auger energy spectroscopy. The results indicated that the pitting performance of the 316 L stainless steel was not negatively influenced by the spots and the white spots simply resulted from the slightly different surface morphology in the spot areas. Findings The white spots are actually the slightly rougher surface areas with some carbon-containing species. They do not reduce the pitting resistance. Interestingly, the white spot areas even have slightly improved general corrosion resistance. Research limitations/implications Not all surface contamination or roughening can adversely affect the corrosion resistance of stainless steel. Practical implications Stainless steel components with such surface white spots are still qualified products in terms of corrosion performance. Originality/value The surface spot of stainless steel was systematically investigated for the first time for its effect on corrosion resistance and the conclusion was new to the common knowledge.

Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 226 ◽  
Author(s):  
Jifu Zhang ◽  
Chunming Deng ◽  
Jinbing Song ◽  
Changguang Deng ◽  
Min Liu ◽  
...  

In this study, FeCrMnWMoSi amorphous/nanocrystalline coating was prepared on stainless steel by high-velocity oxygen fuel (HVOF) spraying. In order to thoroughly evaluate this novel material, the corrosion behaviors and corrosive film characteristics of the amorphous/nanocrystalline coating in NaCl corrosive media were studied using electrochemical measurement technologies such as potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). It was found that the corrosion resistance of Fe-based amorphous/nanocrystalline coating could be attributed to the passive film formed, which consisted of Fe, Cr, Mo, and W oxides. pH has an important influence on the corrosion resistance of amorphous/nanocrystalline coating by changing the pitting corrosion mechanism. Under neutral and acidic conditions, the corrosion mechanism of Fe-based amorphous/nanocrystalline coating was mainly local pitting corrosion. However, under strong alkaline conditions, the amorphous/nanocrystalline coating not only had pitting corrosion, but also had the active dissolution of the passive film. Therefore, the anti-corrosion performance of Fe-based amorphous/nanocrystalline coating under alkaline conditions was not as good as neutral and acidic corrosive medium.


2019 ◽  
Vol 66 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Guo Yi ◽  
Junhua Xu ◽  
Chuanbo Zheng

Purpose There are obvious differences in corrosion resistance of different 2205 welding joints with different ratios of austenite and ferrite, from the top to the bottom, the austenite content decreased gradually while the ferrite increased. In each region of welded joint, the pitting resistance number of ferrite is higher than that of austenite; pitting corrosion is more likely to occur in austenite phase first on the top region of the weld and in the secondary phase precipitates on the other regions of the weld. The fluctuation of the ratio of austenite and ferrite has a great influence on performance of passive film in 3.5 per cent NaCl solution. Design/methodology/approach To study the corrosion behavior of welded joint, the samples were obtained by laser hybrid welding. Pitting corrosion was studied in different area of welded joint. The Mott–Schottky curves of welded joints were measured to study the passive film on the different welded joint area. Findings Due to the difference of heat input and the limit of filler depth of the wire, the microstructure of duplex stainless steel laser welding joint has obvious difference in the thickness direction. In addition, there will be harmful secondary phase (such as chromium nitride and σphase) precipitates in the lower part of the joint. For the welded joint, the corrosion resistance decreases with the increase in the difference of the microstructure. Pitting corrosion usually takes the two phases as the nucleation point and grows up. The surface of 2205 duplex stainless steel laser hybrid welding joint cannot form a complete passive film in 3.5 per cent NaCl solution, and the more the ratios of austenite and ferrite deviate from equilibrium position (50:50), the worse the performance of passive film is. Originality/value In this paper, the authors attempt to establish the correlation between the semiconductor electronic properties of passive film and the difference of microstructures and the component in a joint welded by laser hybrid welding. The effect of passive film on the corrosion resistance of the weld was further investigated.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jun He ◽  
Lin Chen ◽  
Yanjing Su

Purpose The purpose of this study is to elucidate the effect of Mn addition on the corrosion behavior of stainless steel. Design/methodology/approach Chronoamperometry, quasi-steady-state polarization and electrochemical impedance spectroscopy were used to investigate the corrosion behavior of Mn added A13Cr-HS sample and original S13Cr samples. In addition, the corrosion product film was characterized by a field emission scanning electron microscope equipped with energy-dispersive spectroscopy and X-ray photoelectron spectroscopy. Findings The A13Cr-HS sample with 8 wt.% Mn addition maintained good general corrosion resistance in both acidic and alkaline solutions compared to the original S13Cr sample. Additionally, the A13Cr-HS sample had good pitting resistance in an alkaline solution containing Cl−, but a weaker resistance in an acidic solution. Originality/value The influence of Mn addition on the formation mechanism of the passive film was systematically analyzed.


2008 ◽  
Vol 569 ◽  
pp. 197-200 ◽  
Author(s):  
Wei Zhang ◽  
De Ning Zou ◽  
Hong Hong Yao ◽  
Jun Yang

Copper is a well-known alloying element which is used to improve the resistance to general corrosion of stainless steels. Our previous experiments show that the increase of copper content can acquire the excellent antibacterial properties and can also increase the tendency to cold formability of the ferritic stainless steels. However, the effect of alloying Cu on the resistance to localized corrosion has not been clarified sufficiently. In order to understand the effect of copper on pitting corrosion resistance of the ferritic antibacterial stainless steel, the electrochemical experiments were carried out and the anodic polarization curves were performed in 3.5% NaCl solution for two kinds of steels. The results reveal that the ε-Cu phase in ferrite matrix diminishes pitting corrosion resistance of the antibacterial stainless steel in the chlorides medium. It is connected with the poor passive behavior of the ε-Cu phase inclusions.


2015 ◽  
Vol 9 (11) ◽  
pp. 119 ◽  
Author(s):  
W. A. Ghanem ◽  
W. A. Hussein ◽  
S. N. Saeed ◽  
S. M. Bader ◽  
R. M. Abou Shahba

The effect of partial replacement of nickel with nitrogen on the corrosion resistance of newly designed austenitic stainless steel samples without and with heat treated was investigated in 3.5wt% and 5wt% NaCl solution using open-circuit, potentiodynamic, cyclic anodic polarization and electrochemical impedance spectroscopy techniques. The results showed that, passivation in sample 1 where the highest addition of nickel and low addition of nitrogen is different from that for sample 4 where the nitrogen is greatest and the nickel is reduced almost to the third comparing sample 1. The difference in responses of heat treated samples to localized and general corrosion could be attributed to the difference in their phase compositions. The appearance of ferrite phase for samples (2, 4, 5 and 6) after heat treatment resulted in lowering the general and localized corrosion resistance than as forged samples in contrast with samples 1 and 3, where they still pure austenite. The obtained results are confirmed by surface examination.


2019 ◽  
Vol 37 (3) ◽  
pp. 259-271 ◽  
Author(s):  
Y. Koumya ◽  
R. Idouhli ◽  
M. Khadiri ◽  
A. Abouelfida ◽  
A. Aityoub ◽  
...  

AbstractStainless steel (SS) is a very corrosion-resistant alloy used in different industrial plants because of its chemical and mechanical properties. However, the high chloride concentration in sulfuric acid (H2SO4) may promote both general corrosion and pitting corrosion. The pitting corrosion susceptibility in SS in chlorinated H2SO4 and the effect of Euphorbia echinus extract (EEE) on both general corrosion and pitting corrosion have been studied using potentiodynamic polarization, electrochemical impedance spectroscopy, chronoamperometry, cyclic voltammetry, and scanning electron microscopy (SEM). The pitting potential has been found to shift slightly in the presence of chloride ions (Cl−) in H2SO4. Also, pitting corrosion initiation has been demonstrated in the recorded chronoamperograms as a linear straight line having a positive slope. EEE has reduced the general corrosion and the inhibitor adsorption was found to follow the Langmuir isotherm. SEM micrographs showed that the tested inhibitor has efficiently acted on pitting corrosion for different concentrations of Cl−. Also, the kinetic findings were in good agreement with the surface analysis data. Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectrophotometric measurements provided more insights on the interaction between the chemical functional groups of the inhibitor and the SS surface.


2018 ◽  
Vol 65 (5) ◽  
pp. 492-498 ◽  
Author(s):  
Byung-Hyun Shin ◽  
Junghyun Park ◽  
Jongbae Jeon ◽  
Sung-bo Heo ◽  
Wonsub Chung

Purpose In this study, super duplex stainless steel (SDSS) was heat-treated. The purpose of this study is to assess the effect of the cooling rate after heat treatment on the pitting corrosion of SDSS. Design/methodology/approach The heat treatment from 1,000°C to 1,300°C was applied to SDSS to check the effect of the cooling rate. Findings The heat treatment temperature produced a different SDSS microstructure, and the cooling rate led to the growth of austenite. The casted SDSS indicated the presence of heterogeneous austenite, and the precipitation secondary phase under 1.6 per cent precipitated to bare metal. By applying heat treatment and cooling SDSS, its corrosion resistance changes because of the change in the chemical composition. The cooling rate at 5,600 J/s has the highest critical pitting temperature (CPT) at 1,100°C, and the cooling rate at 1.6 J/s has the highest CPT at 1,200°C. Low cooling rate (0.4 J/s) made the secondary phase at all temperature range. Research limitations/implications The effect of secondary phase not consider because that is well known to decreasing corrosion resistance. Practical implications Solution annealing is taken into account to optimize the corrosion resistance. But that is not consider the cooling rate at each temperature. This study assessed the effect of the cooling rate at each temperature point. Social implications Manufacturers need to know the effect of the cooling rate to optimize the corrosion resistance, and this study can be applied in the industrial scene. Originality/value SDSS is hard the optimization because SDSS is a dual-phase stainless steel. Corrosion resistance can be optimized by controlling heat treatment temperature and the cooling rate. Anyone not studied the effect of the cooling rate at each temperature. The effect of the cooling rate should be considered to optimize the corrosion resistance.


2014 ◽  
Vol 61 (6) ◽  
pp. 387-394 ◽  
Author(s):  
J.L. Li ◽  
C.T. Qu ◽  
S.D. Zhu ◽  
L. Liu ◽  
Z.Q. Gao

Purpose – The purpose of this study was to investigate the pitting resistance and assess the critical pitting temperature (CPT) of a super martensitic stainless steel, 00Cr13Ni5Mo2, made in China, considering especially the difference in the pitting corrosion resistance between the domestic super martensitic stainless steel and an imported one. Design/methodology/approach – Potentiodynamic sweep tests were applied to investigate the effects of four NaCl concentrations (weight per cent) of 1, 3.5, 9 and 17, and four testing temperatures of 30, 50, 75 and 90°C on the pitting resistance of the domestic super martensitic stainless steel in the presence of CO2. Potentiostatic sweep tests were utilized to determine the CPT. Furthermore, chemical immersion exposures, implemented according to the appropriate standard were used to evaluate the difference in the pitting corrosion resistance between the domestic super martensitic stainless steel and an imported one. In addition, the morphology of pits was analyzed using a scanning electron microscope. Finding – The pitting potential of the domestic super martensitic stainless steel decreased with an increase in NaCl concentration and temperature in the presence of CO2. The CPT of the domestic super martensitic stainless steel measured by potentiostatic polarization was 41.16°C. Two types of typical corrosion pits, closed pits formed at 35°C and open pits formed at 50°C, were observed. Furthermore, compared to the super martensitic stainless steel made in Japan, the domestic one was better in terms of pitting potential, corrosion rate and the density of the pits, but worse in terms of the depth of the pits, which may result in a risk of corrosion perforation of tubing and casings. Originality/value – The paper highlights that chloride ions, temperature and the presence of CO2 play an important role on the pitting resistance of super martensitic stainless steel.


2019 ◽  
Vol 11 (6) ◽  
pp. 819-831 ◽  
Author(s):  
Bassam Abdallah ◽  
M. Kakhia ◽  
W. Alsadat

Purpose TiN and TiAlVN films have been prepared by DC magnetron sputtering technique at room temperature. TiN target has been used to deposit TiN thin film under pure argon (100 percent Ar) gas. Additionally, Ti6Al4V alloy target has been used to deposit TiAlVN under nitrogen and argon gas (50 percent Ar and 50 percent N2). In this paper, two substrate types have been used: stainless steel 304 and Si(100). This analysis has confirmed that the nitride films, (TiN/Si) and TiAlVN in both cases, have been produced. Energy Depressive X-ray Spectroscopy (EDX) measurement confirmed that the TiN/Si was stoichiometry, where the N/Ti ratio was about 1 with low oxygen contamination. The results obtained have indicated that the TiAlVN has more resistance to corrosion than TiN film in 3.5 percent NaCl at 25°C (seawater). Both films, TiAlVN/SS304 and TiN/SS304, have shown improved corrosion resistance compared with virgin 304 substrate. Microhardness was carried out using Vickers method; the microhardness values for TiN/SS304 and TiAlVN/SS304 were approximately 7.5 GPa and 25.3 GPa, respectively. The paper aims to discuss these issues. Design/methodology/approach The films were prepared by a DC magnetron sputtering system starting from high pure (99.99 percent) Ti6Al4V target (Al 6wt%, V 4wt% and balance Ti) in plasma discharge argon/nitrogen (50 percent Ar and 50 percent N2) for deposition of TiAlVN film. Pure TiN target (99.99 percent) was used for preparation of TiN film in pure argon plasma. The diameter of target was 50 mm and the power applied for preparation of the two films was 100 W. A cylindrical high-vacuum chamber (Figure 2) made of stainless steel 316, with height 363 mm diameter, was fabricated locally. Scanning electron microscope images have been used to discover the films morphology. The composition of the films has been determined by EDX technique for films deposited on Si substrate. The electrochemical corrosion test was carried out using conventional three-electrode cell of 300 ml capacity by using Voltalab PGZ 301 system (France) using Tafel extrapolation method and electrochemical impedance spectroscopy techniques. Findings TiN and TiAlVN films have been prepared by DC magnetron sputtering technique without heating of the substrates holder. The effects of the composition of nitride films on mechanical and corrosion properties were investigated. The composition of the films has been determined by EDX technique. The effect of using titanium alloy (Ti with Al and V) on the composition and crystalline quality has been investigated. The microhardness is strongly dependent on the addition of the Al and V elements, and it consequently improves mechanical proprieties. The microhardness values for TiN/SS304 were approximately 7.5 GPa and 25.3 GPa for TiAlVN/SS304. They indicate that prepared films prevent the aggressive action of corrosion media. Originality/value TiN and TiAlVN films have been prepared by DC magnetron sputtering method at room temperature. Titanium nitride film, especially TiAlVN, is an effective method to improve the corrosion resistance of SS304. TiAlVN film has exhibited enhanced corrosion resistance and higher microhardness. Independent time-of-flight elastic recoil detection analysis has been used to determine the composition of the film.


2014 ◽  
Vol 43 (6) ◽  
pp. 371-378 ◽  
Author(s):  
N.A. Mat Nor ◽  
L. Ismail ◽  
S.K.M. Jamari ◽  
K. Ramesh ◽  
B. Vengadaesvaran ◽  
...  

Purpose This paper aims to analyse the coating behaviour in corrosion environment as well as to evaluate the best percentage amount of copper oxide and copper needed for organic coating in order to prevent the corrosion degradation. Electrochemical impedance spectroscopy (EIS) studies have been conducted in order to evaluate the corrosion performance of polyester-epoxy-copper oxide and polyester-epoxy-copper coating systems. Design/methodology/approach The availability of this modem instruments is used to obtain impedance data as well as computer programs to interpret the results that made the technique popular. In addition, EIS is well suited to the study of polymer-coated metals. Findings The results showed that samples containing 25 weight per cent of copper oxide and copper (90P25CuO and 90P25Cu) obtained the excellent corrosion properties from the first day up to 30 days of NaCl immersion. The highest corrosion resistance values obtained by 90P25CuO and 90P25Cu on the 30th day were 7.107 × 108 O and 5.701 × 108 O, respectively, with lower double layer capacitance of 1.407 × 10−9 Farad and 3.935 × 10−9 Farad, respectively. Moreover, the water uptake gained by these two coating samples was the lowest at the end of immersion, which was 0.0084 for 90P25CuO and 0.1592 for 90P25Cu, showing that the sample has good corrosion performance. Originality/value This paper discussed on the highest corrosion resistance, double layer capacitance and the water uptake of the copper (Cu) and copper oxide (CuO) coating system obtained from the EIS measurements.


Sign in / Sign up

Export Citation Format

Share Document