Effect of carbides on sensitivity of pitting corrosion in Inconel 718 alloy

2020 ◽  
Vol 67 (2) ◽  
pp. 158-165
Author(s):  
Xianping Wei ◽  
Wen Jie Zheng

Purpose This paper aims to expand the application area of Inconel 718 alloy in marine environment, the sensitivity of pitting corrosion should be analyzed and discussed, especially the effect of block carbides. Design/methodology/approach Effect of carbides on the sensitivity of pitting corrosion for Inconel 718 alloy was carried out at 30°C in 3.5% NaCl solution using dynamic electrochemical impedance spectroscopy and anodic polarization techniques. In addition, the initiation of pitting corrosion was investigated by immersion test in 0.05 M HCl + 6% FeCl3 solution. Findings As a result, the precipitation of carbides, as the initiation of pitting corrosion, increased pitting corrosion susceptibility, especially the block carbides could lead to deep-spalling. Within that process, temperature and potential acted as the main controlling factors, and the effect of the latter was more distinct. Originality/value The initiation of pitting corrosion was revealed by the immersion test. The mechanism of pitting corrosion was analyzed and discussed.

2016 ◽  
Vol 63 (5) ◽  
pp. 355-359
Author(s):  
Naghmeh Amirshaqaqi ◽  
Mehdi Salami-Kalajahi ◽  
Mohammad Mahdavian

Purpose The conventional method for evaluation of corrosion resistance of aluminum flakes is based on the volume of evolved hydrogen in acidic and basic environments. This study aims to introduce electrochemical impedance spectroscopy (EIS) as a method to evaluate corrosion resistance of aluminum flakes. Design/methodology/approach Aluminum flakes with different surface modifications were compressed to build a disk. Then, the disks were examined by EIS in NaCl solution. Also, the corrosion resistance of the flakes was evaluated by the conventional method. Findings The results revealed applicability of EIS for evaluation of corrosion resistance of aluminum flakes. Originality/value Application of EIS to evaluate corrosion resistance of aluminum flakes is novel. As it can provide fast, reliable and quantitative estimation of the corrosion resistance of the aluminum flakes in the 3.5 per cent NaCl solution. This medium is highly encountered for the aluminum flakes used in organic coatings, that is why test in NaCl solution is more convenient compared to the conventional methods using acid and alkaline conditions.


2015 ◽  
Vol 62 (5) ◽  
pp. 322-326 ◽  
Author(s):  
Zhiping Zhu ◽  
Xiaocui Jiao ◽  
Xueying Tang ◽  
Haiwei Lu

Purpose – The purpose of this paper was to investigate the effects of SO42− concentration on the corrosion behaviour of T23 and T12 steels in simulated water chemistry condition solution of 600 MW fossil-fired power boilers. Design/methodology/approach – The influence and mechanism of SO42− ions on the pitting corrosion of T23 and T12 steels in simulated oxygenated treatment water chemistry solution was studied using electrochemical potentiodynamic polarization scans and electrochemical impedance spectroscopy. Findings – The results showed that T23 and T12 were susceptible to pitting corrosion in the simulated solution with full SO42− concentration for the competitive adsorption of OH− and SO42− on the surface of steels. The pitting sensitivity of the steels improved with increasing SO42− concentration. The corrosion resistance for SO42− of T23 was stronger than that for T12. Originality/value – This study is an attempt to provide direction for regulating the concentration of SO42− in boiler water and for selecting the material for boiler water wall tubes.


2015 ◽  
Vol 62 (6) ◽  
pp. 388-393 ◽  
Author(s):  
Bo Huang ◽  
Yuanhua Lin ◽  
Ambrish Singh ◽  
Eno E Ebenso ◽  
Lujiang Zhou ◽  
...  

Purpose – The purpose of this paper is to test bagasse extract as an effective corrosion inhibitor. Design/methodology/approach – The bagasse was extracted without any toxic substance and was found to be effective for corrosion of J55 steel. Findings – The inhibition efficiency of bagasse was more than 90 per cent in 3.5 per cent NaCl solution saturated with CO2 for corrosion inhibition of J55 steel. Research limitations/implications – The inhibition effect of Saccharum sinense bagasse extract on the corrosion of J55 steel in 3.5 weight per cent NaCl saturated with CO2 solution was investigated by means of Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, polarization curve and scanning electron microscope. Practical implications – It can be used as low-cost corrosion inhibitor. Social implications – It is an environment-friendly corrosion inhibitor. Originality/value – This work is original and carried out in Southwest Petroleum University, China. This is not communicated anywhere else.


2019 ◽  
Vol 66 (6) ◽  
pp. 697-703
Author(s):  
Zhenqi Liu ◽  
Jie Wang ◽  
Jianhan Chen ◽  
Xiya Liu ◽  
Yibin Yin ◽  
...  

Purpose The purpose of this study is to explore the mechanism of branch pits and tunnels formation and increase the specific surface area and capacitance of anode Al foil for high voltage electrolytic capacitor by D.C. etching in acidic solution and neutral. Design/methodology/approach Al foil was first D.C. etched in HCl-H2SO4 mixed acidic solution to form main tunnels perpendicular to the Al surface, and then D.C. etched in neutral NaCl solution including 0.5 per cent C6H8O7 and Cu(NO3)2 with different concentration to form branch tunnels normal to Al surface. Between two etching, Cu nuclei were electroless deposited on the interior surface of main tunnels by natural occluded corrosion cell effect to form micro Cu-Al galvanic local cells. The effects of electroless deposited Cu nuclei on cross-section etching morphologies and electrochemical behavior of Al foil was investigated with SEM, polarization curve and electrochemical impedance spectroscopy (EIS). Findings The results show that sub branch tunnels can form along the main tunnels owing to the formation of Cu-Al micro-batteries, in which Cu is cathode and Al is anode. With increase in Cu(NO3)2 concentration, more Cu nuclei can be electroless deposited and serve as the favorable sites for branch tunnel initiation along the whole length of main tunnels, leading to enhancement in specific capacitance of anode Al foil. Originality/value Cu nuclei were electroless deposited on the interior surface of main tunnels by natural occluded corrosion cell effect to form micro Cu-Al galvanic local cells, which can serve as the favorable sites for branch tunnel initiation along the main tunnels to enhance specific capacitance of anode Al foil.


Author(s):  
Yanbing Tang ◽  
Xinwang Shen ◽  
Yanxin Qiao ◽  
Lanlan Yang ◽  
Jian Chen ◽  
...  

2016 ◽  
Vol 22 (2) ◽  
pp. 322-329 ◽  
Author(s):  
Dana H. Abdeen ◽  
Bruce R. Palmer

Purpose This paper aims to evaluate the corrosion behavior of Ti-6Al-4V parts produced with electron beam melting (EBM) machine and compare it with wrought Ti-6Al-4V alloy. Design/methodology/approach Potentiodynamic and potentiostatic tests were applied on EBM Ti-6Al-4V in 3.5 per cent mass NaCl solution to determine the pitting potential and critical pitting temperature (CPT). A relation between pitting potential and temperature was established for EBM Ti-6Al-4V alloy by conducting potentiodynamic testing under different temperatures. CPT was also measured for EBM Ti-6Al-4V alloy in 3.5 per cent mass NaCl solution at a standard potential of 800 mV vs saturated calomel electrode (SCE). The same tests were performed on wrought Ti-6Al-4V for comparison purposes. Moreover, CPT for EBM Ti-6Al-4V alloy was measured in 3.5 per cent mass NaCl solution of different pH of 2.0, 5.7 and 10.0 to examine the effect of aggressive conditions on the pitting corrosion of EBM alloy. Findings Potentiodynamic test resulted in a relatively high pitting potential of EBM alloy, which was close to the pitting potential of wrought alloy even at higher temperatures. In addition, EBM samples did not pit when potentiostatic test was performed at 800 mV vs SCE, even at high and low values of pH. Originality/value EBM Ti-6Al-4V alloy has been increasingly playing an important role in aerospace, automobile and industrial fields. The technique and conditions of manufacturing form voids and increase roughness of the exterior surface of EBM objects, which might increase the tendency to initiate pitting corrosion within its holes and surface folds. This article shows that, despite surface variations and porosity in EBM Ti-6Al-4V alloy, the material maintained its corrosion resistance. It was found that the corrosion behavior of EBM alloy was close to that of the conventionally made wrought Ti-6Al-4V alloy.


2016 ◽  
Vol 63 (2) ◽  
pp. 82-88 ◽  
Author(s):  
Shengsong Ge ◽  
Menglong Li ◽  
Qian Shao ◽  
Ke Liu ◽  
Junxiang Wang ◽  
...  

Purpose – This paper aims to clarify the effect of metal ions added in the γ-glycidoxypropyltrimethoxysilane (γ-GPS) solutions on the anti-corrosion properties of the γ-GPS coatings on cold-rolled iron (CRI). Design/methodology/approach – The transformations of functional groups involved in reactions during the coating process were characterized by Fourier transformed infrared spectroscopy (FTIR), and the thickness of the γ-GPS coatings on the CRI substrates was measured using high-powered microscopy. The anti-corrosion properties of γ-GPS-treated samples were evaluated by neutral salt spray tests, polarization curves and electrochemical impedance spectroscopy measurements. Findings – The results show that Zn2+ and Mg2+ in the γ-GPS solutions promote the formation of Si-O-Si and Si-O-Fe bonds and improve the anti-corrosion properties of the γ-GPS coatings on CRI. However, Al3+ and Na+ in the γ-GPS solutions do not play this role. Originality/value – Although there have been previous research studies on the γ-GPS coatings on CRI, this paper is the first to study the effect of metal ions added in the silane solutions on the anti-corrosion properties of the γ-GPS coatings, and it has been confirmed that the anti-corrosion properties changed when Zn2+ (or Mg2+) is present.


2009 ◽  
Vol 56 (6) ◽  
pp. 299-305 ◽  
Author(s):  
Xia Cao ◽  
Ning Wang ◽  
Ning Liu

PurposeThe purpose of this paper is to investigate the effect of chloride along with NO2 on the atmospheric corrosion of bronze using exposure tests.Design/methodology/approachSurface tension tests and electrochemical impedance measurements together with scanning electron microscopy (SEM) with energy dispersive atomic X‐ray, and X‐ray diffraction are used to characterize the corrosion behavior.FindingsThe results of the weight loss measurements show that the whole corrosion kinetics can be described approximately by: ΔW=atb; the synergistic effect of chloride and NO2 is observed clearly, though no nitrate existed in the corrosion products.Originality/valueA new catalyst theory has been suggested in this paper, i.e. that NO2 acts as a catalyst during the corrosion process when significant quantities of chloride also are present.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guanghui Yi ◽  
Dajiang Zheng ◽  
Guang-Ling Song

Purpose The purpose of this paper is to address the concern of some stainless steel users. To understand the effect of surface white spots on corrosion performance of stainless steel. Design/methodology/approach White spots appeared on some component surfaces made of 316 L stainless steel in some industrial applications. To address the concern about the pitting performance in the spot areas, the pitting corrosion potential and corrosion resistance were measured in the spot and non-spot areas by means of potentiodynamic polarization and electrochemical impedance spectroscopy and the two different surface characteristics were analytically compared by using optical microscopy, laser confocal microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive spectroscopy and auger energy spectroscopy. The results indicated that the pitting performance of the 316 L stainless steel was not negatively influenced by the spots and the white spots simply resulted from the slightly different surface morphology in the spot areas. Findings The white spots are actually the slightly rougher surface areas with some carbon-containing species. They do not reduce the pitting resistance. Interestingly, the white spot areas even have slightly improved general corrosion resistance. Research limitations/implications Not all surface contamination or roughening can adversely affect the corrosion resistance of stainless steel. Practical implications Stainless steel components with such surface white spots are still qualified products in terms of corrosion performance. Originality/value The surface spot of stainless steel was systematically investigated for the first time for its effect on corrosion resistance and the conclusion was new to the common knowledge.


2019 ◽  
Vol 66 (4) ◽  
pp. 471-478 ◽  
Author(s):  
Majid Hosseinzadeh ◽  
Abdol Hamid Jafari ◽  
Rouhollah Mousavi ◽  
Mojtaba Esmailzadeh

Purpose In this study, electrochemical deposition method which have cheaper equipment than thermal spraying methods and is available for the production of composite coatings were used. Design/methodology/approach Composite coatings were electrodeposited from a Watts's bath solution in which the suspended Cr3C2-NiCr particles were dispersed in the bath solution during deposition. Potentiodynamic polarization and electrochemical impedance spectroscopy techniques have been used to evaluate the corrosion resistance of the composite coating in the 3.5 Wt.% NaCl solution. Findings It was found that the submicron Cr3C2-NiCr particles distributed uniformly in the coating and depend on the current density of deposition, different amount of particles can be incorporated in the coating. The results showed that the corrosion resistance of the Ni/ Cr3C2-NiCr composite coatings is more comparable to the pure nickel coating. Originality/value Production of Ni-base composite coating from an electrolytic bath containing Cr3C2-NiCr particles is possible via electrodeposition.


Sign in / Sign up

Export Citation Format

Share Document