Effect of J3 perturbation on satellite position in LEO

2018 ◽  
Vol 90 (1) ◽  
pp. 74-86
Author(s):  
Nai-ming Qi ◽  
Qilong Sun ◽  
Yong Yang

Purpose The purpose of this paper is to study the effect of J3 perturbation of the Earth’s oblateness on satellite orbit compared with J2 perturbation. Design/methodology/approach Based on the parametric variation method in the time domain, considering more accurate Earth potential function by considering J3-perturbation effect, the perturbation equations about satellite’s six orbital elements (including semi-major axis, orbit inclination, right ascension of the ascending node, true anomaly, eccentricity and argument of perigee) has been deduced theoretically. The disturbance effects of J2 and J3 perturbations on the satellite orbit with different orbit inclinations have been studied numerically. Findings With the inclination increasing, the maximum of the semi-major axis increases weakly. The difference of inclination disturbed by the J2 and J3 perturbation is relative to orbit inclinations. J3 perturbation has weak effect on the right ascension and argument of perigee. The critical angle of the right ascension and argument of perigee which decides the precession direction is 90° and 63.43°, respectively. The disturbance effects of J2 and J3 perturbations on the argument of perigee, right ascension and eccentricity are weakened when the eccentricity increases, simultaneously, the difference of J2 and J3 perturbations on argument of perigee, right ascension and argument of perigee decreases with eccentricity increasing, respectively. Practical implications In the future, satellites need to orbit the Earth much more precisely for a long period. The J3 perturbation effect and the weight compared to J2 perturbation in LEO can provide a theoretical reference for researchers who want to improve the control accuracy of satellite. On the other hand, the theoretical analysis and simulation results can help people to design the satellite orbit to avoid or diminish the disturbance effect of the Earth’s oblateness. Originality/value The J3 perturbation equations of satellite orbit elements are deduced theoretically by using parametric variation method in this paper. Additionally, the comparison studies of J2 perturbation and J3 perturbation of the Earth’s oblateness on the satellite orbit with different initial conditions are presented.

For an earth satellite orbit of small eccentricity ( e < 0·2) formulae are derived for the changes per revolution produced by the atmosphere in the argument of perigee, in the right ascension of the ascending node, and in the orbital inclination. These changes are then expressed in terms of the change in length of the semi-major axis, and numerical values are obtained for satellite 1957 β . It is found that the rotation of the major axis in the orbital plane due to the atmosphere is significant, being most important for inclinations between 60 and 70°. The total rotation, due both to the gravitational potential and to the atmosphere, agrees reasonably well with the observed values. The oblateness of the atmosphere is found to have only a small effect on the changes in the orbital inclination and the right ascension of the ascending node.


2020 ◽  
pp. 453-461
Author(s):  
Ahmed K. Izzet ◽  
Mayada J. Hamwdi ◽  
Abed T. Jasim

     The main objective of this paper is to calculate the perturbations of tide effect on LEO's satellites . In order to achieve this goal, the changes in the orbital elements which include the semi major axis (a) eccentricity (e) inclination , right ascension of ascending nodes ( ), and fifth element argument of perigee ( ) must be employed. In the absence of perturbations, these element remain constant. The results show that the effect of tidal perturbation on the orbital elements depends on the inclination of the satellite orbit. The variation in the ratio  decreases with increasing the inclination of satellite, while it increases with increasing the time.


2019 ◽  
Vol 91 (7) ◽  
pp. 977-986 ◽  
Author(s):  
Junhua Zhang ◽  
Jianping Yuan ◽  
Wei Wang ◽  
Jiao Wang

Purpose The purpose of this paper is to obtain the reachable domain (RD) for spacecraft with a single normal impulse while considering both time and impulse constraints. Design/methodology/approach The problem of RD is addressed in an analytical approach by analyzing for either the initial maneuver point or the impulse magnitude being arbitrary. The trajectories are considered lying in the intersection of a plane and an ellipsoid of revolution, whose family can be determined analytically. Moreover, the impulse and time constraints are considered while formulating the problem. The upper bound of impulse magnitude, “high consumption areas” and the change of semi-major axis and eccentricity are discussed. Findings The equations of RD with a single normal impulse are analytically obtained. The equations of three scenarios are obtained. If normal impulse is too large, the RD cannot be obtained. The change of the semi-major axis and eccentricity with large normal impulse is more obvious. For long-term missions, the change of semi-major axis and eccentricity leaded by multiple normal impulses should be considered. Practical implications The RD gives the pre-defined region (all positions accessible) for a spacecraft under a given initial orbit and a normal impulse with certain magnitude. Originality/value The RD for spacecraft with normal impulse can be used for non-coplanar orbital transfers, emergency evacuation after failure of rendezvous and docking and collision avoidance.


The writer first refers to a series of experiments made under the direction of Professor Bache, for the determination of the difference of longitude between New York, Philadelphia and Washington, by means of the magnetic telegraph. By this series of experiments he considers it established that, by means of Morse’s telegraph, two clocks distant from each other 200 miles, can be compared together with the same precision as if they were placed side by side; and that the difference of longitude of two places can be determined with the same precision as the relative error of the clocks. These results were so satisfactory that Professor Bache determined to pro­secute them more extensively, and during the past summer comparisons have been made between New York and Cambridge observatory near Boston. The plan of operation this season was more matured than during the former. The comparisons were all made between a solar chronometer at Cambridge and a sidereal clock at New York. At ten o’clock in the evening, the two observatories having been put in telegraphic communication, when the seconds hand of the solar chronometer came round to 60 s , a signal was given at Cambridge, by pressing the key of the telegraph-register; at the same instant a click was heard at New York, and the time was recorded according to the sidereal clock. At the end of 10 s a second signal was given, which was also recorded at New York; at the end of another 10 s a third signal was given, and so on for sixty seconds. The Cambridge astronomer then commenced beating seconds by striking the key of the telegraph-register in coincidence with the beats of his chronometer. The New York astronomer compared the signals received with the beats of his clock, and waited for a coincidence. When the beats were sensibly synchronous the time was recorded, and the astronomer waited six minutes for another coincidence of beats. The Cambridge astronomer continued beating seconds for fifteen minutes , during which time the New York observer was sure of two coincidences, and might obtain three. When these were concluded, the New York astronomer in the same manner gave signals for one minute at intervals of 10 s , and then beat seconds for fifteen minutes, during which time the Cambridge astronomer obtained four or five coincidences upon his chronometer. This mode of comparison was practised every night, and it is considered that the uncertainty in the comparison of the time-pieces cannot exceed two or three hundredths of a second on any night; and in a series of comparisons the error may be regarded as entirely eliminated. Another mode of comparison which was practised is that of telegraphing star transits. A list of stars which culminate near our zenith at intervals of five or six minutes was prepared, and the observers, both at New York and Cambridge, were furnished with a copy. They then proceeded as follows: Cambridge selected two stars from the list, which we wall call A and B, and struck the key of his register at the instant when the star A passed each of the seven wires of his transit. These signals were heard at New York, and the times recorded. Cambridge then observed the transit of star B in the ordinary manner without telegraphing. New York then observed the transit of star A on his meridian in the usual manner; and struck his key at the instant the star B passed each of the seven wires of his transit, which signals were heard and recorded at Cambridge. The difference of longitude between New York and Cambridge is nearly twelve minutes, affording ample time for all these observations. Thus New York obtained upon his own clock the times of transit of star A over the meridians of Cambridge and New York; and Cambridge obtained upon his chronometer the times of transit of star B over the same meridians. The difference of these times gives the difference of longitude independent of the right ascension of the stars. Both observers then reversed the axis of their transit instruments; Cambridge selected a second pair of stars from the list, and the same series of observations was repeated as with the first pair. The error of collimation was thus eliminated, and by confining the observations to stars within about five degrees of the zenith, the influence of azimuthal error was avoided. The level being read at every reversal, the correction for it was applied by computation. In this manner it is hoped to eliminate every possible source of error, except that which arises from the personal habits of the observers. In order to eliminate this error, a travelling observer worked for a time at Cambridge and compared with the Cambridge astronomer; then came to New York and compared with the New York astronomer; then returned to Cambridge again, and so on as often as was thought necessary. Finally, at the conclusion of the campaign all the observers were to meet at Cambridge and make a general comparison of their modes of observation.


2020 ◽  
Vol 24 (1) ◽  
pp. 56-60
Author(s):  
Mohamed R. Amin

AbstractThe focus of this paper is the design of a self-maintenance orbit using two natural forces against each other. The effect of perturbations due to Earth's oblateness up to the third order on both the semi-major axis and eccentricity for a low Earth orbit satellite together with the perturbation due to air drag on the same orbital parameters were used, in order to create self-maintenance orbits. Numerical results were simulated for a low earth orbit satellite, which substantiates the applicability of the results.


A solution is obtained for the rate of change of semi-major axis and perigee distance of a satellite orbit with time due to the resistance of the atmosphere. The logarithm of air density is assumed to vary quadratically with height, and the oblateness of the atmosphere is taken into account. The calculation of perigee air density in terms of the rate of change of satellite period is dealt with; and the method is applied to data at present available on six different satellites. The variation of air density with height is obtained as ln ρ = -28·59(±0·15) - ( h - 200 )/46(±5) + 0·028(±0·013) ( h - 200) 2 /(46) 2 for h in the range of approximately 170 to 700 km, where ρ is in grams/cm 3 , h is in kilometres and standard deviations are given in brackets.


1956 ◽  
Vol 9 (1) ◽  
pp. 11-16
Author(s):  
Leo Randić

The problem of the determination of the observer's position on the Earth can be most easily solved in terms of the equatorial coordinates of the observer's zenith. From Fig. 1, in which the inner circle represents the Earth and the outer circle the celestial sphere, it can be seen that the zenithal point on the celestial sphere is its intersection with the prolongation of the radius to the observer's position. The geographical latitude of the observer is equal to the declination of the observer's zenith, and the geographical longitude is equal to the difference between Greenwich sidereal time (G.S.T.) and the right ascension of the observer's zenith. We can obtain G.S.T. by interpolation from a nautical almanac or directly from a separate watch or clock set to keep sidereal time.


The theory previously developed for the changes in the perigee distance and semi-major axis of a satellite orbit due to air drag is extended to enable the air-density profile (i. e. its relative variation with height) to be derived from the motion of the orbit’s perigee. The solution is first obtained in terms of the change in perigee distance and then in terms of the change in the radius of the earth at the sub-perigee point. Data are analyzed by the two methods, leading to 39 (± 9) and 36 (± 15) km for the scale height in the 180 and 220 km altitude regions.


In this paper theoretical formulae are derived which show the effect of a meridional (south to north) wind on a satellite orbit of eccentricity less than 0.2. The aerodynamic force acting on the satellite, which is normally important only over a small section of the orbit near perigee, is assumed to be in the direction opposite to the satellite’s motion relative to the ambient air, so that meridional motion of the upper atmosphere slightly alters the direction of the drag. The resulting changes in the satellite’s orbital inclination and the right ascension of the node are evaluated. For a satellite whose perigee remains near the equator, a consistent meridional wind of 100 m/s in the vicinity of perigee can change the orbital inclination by 0.02° as the orbital period decreases by 10 min ; but when perigee moves widely, the effect is generally much smaller.


1979 ◽  
Vol 81 ◽  
pp. 133-143 ◽  
Author(s):  
W. Fricke

Within the work being carried out at Heidelberg on the establishment of the new fundamental reference coordinate system, the FK5, the determination of the location of celestial equator and the equinox form an important part. The plane of the celestial equator defined by the axis of rotation of the Earth and the plane of the ecliptic defined by the motion of the Earth about the Sun are both in motion due to various causes. The intersection of the equator and the ecliptic, the dynamical equinox, is therefore in motion. Great efforts have been made in the past to determine the location and motion of the dynamical equinox by means of observations of Sun, Moon and planets in such a manner that the dynamical equinox can serve as the origin of the right ascension system of a fundamental catalogue. The results have not been satisfactory, and we have some important evidence that the catalogue equinox of the FK4 is not identical with the “dynamical equinox”. Moreover, is has turned out that the difference α(DYN) - α(FK4) = E(T) depends on the epoch of observation T. Duncombe et al. (1974) have drawn attention to the possible confusion between the catalogue equinox and dynamical equinox; they mention the difference between two Earth longitude systems, one established by the SAO using star positions on the FK4 and the other one established by the JPL using planetary positions measured from the dynamical equinox. This is undoubtedly one legitimate explanation of the difference, even if other sources of errors may also have contributed.


Sign in / Sign up

Export Citation Format

Share Document