3D eddy current and temperature field analysis of edge induction heater

Author(s):  
Yilun Li ◽  
Shiyou Yang

Purpose – The temperature drop, especially in the edge of rolled steel in the hot rolling cooling has a catastrophic effect on the steel quality. The purpose of this paper is to study the coupled eddy current-temperature field of a C-type edge induction heater to provide references for engineering applications and designs. Design/methodology/approach – Three-dimensional finite element analysis (FEA) model of a C-type edge induction heater is developed. Especially, a numerical methodology to couple the eddy current and temperature fields is proposed for coupled eddy current and temperature problems involving movement components. FEA software ANSYS is used to solve the coupled eddy current and temperature fields. The heat loss from the eddy current fields is abstracted and processed, and taken as internal heat source in the analysis of the temperature field. The temperature distribution of the rolling steel is obtained. Findings – The numerical results can predict exactly the temperature rise of the rolled steel by means of the edge induction heating system. Practical implications – The proposed numerical methodology for coupling eddy current and temperature fields can be applied to engineering coupled eddy current and temperature problems involving movement components. Also, the developed model and method can be used in the analysis and design of the edge induction heating system. Originality/value – A numerical methodology to couple eddy current and temperature field for solving multi-physics field problems involving movement components is proposed and implemented in available commercial software. A three-dimensional model of the C-type edge induction heat heater is developed. Finite element method is employed to study the coupled eddy current-thermal problem. A method to deal with the movement of the strip steel is proposed. The proposed methodology can be applied to other coupled eddy current-temperature field problem with moving components.

Author(s):  
Karl Hollaus

Purpose The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty. Design/methodology/approach A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied. Findings Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM. Originality/value The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.


Author(s):  
C.H.H.M. Custers ◽  
J.W. Jansen ◽  
M.C. van Beurden ◽  
E.A. Lomonova

PurposeThe purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions. Using the developed method, power losses and parasitic forces that result from eddy current distributions can be computed.Design/methodology/approachIn conducting regions, the Fourier-based solutions are developed to include a spatially dependent conductivity in the expressions of electromagnetic quantities. To validate the method, it is applied to an electromagnetic configuration and the results are compared to finite element results.FindingsThe method shows good agreement with the finite element method for a large range of frequencies. The convergence of the presented model is analyzed.Research limitations/implicationsBecause of the Fourier series basis of the solution, the results depend on the considered number of harmonics. When conducting structures are small with respect to the spatial period, the number of harmonics has to be relatively large.Practical implicationsBecause of the general form of the solutions, the technique can be applied to a wide range of electromagnetic configurations to predict, e.g. eddy current losses in magnets or wireless energy transfer systems. By adaptation of the conductivity function in conducting regions, eddy current distributions in structures containing holes or slit patterns can be obtained.Originality/valueWith the presented technique, eddy currents in conducting structures of finite dimensions can be modeled. The semi-analytical model is for a relatively low number of harmonics computationally faster than 3D finite element methods. The method has been validated and shown to be computationally accurate.


Circuit World ◽  
2015 ◽  
Vol 41 (2) ◽  
pp. 49-54
Author(s):  
Lan Song ◽  
Yang Zhao ◽  
Yaoming Zhou ◽  
Haifei Xiang

Purpose – The purpose of this paper is to analyze and figure out the temperature field and thermal stress field with the calculation model of thermal insulation material and composite material. Design/methodology/approach – The paper adopted the three-dimensional finite element algorithm. Findings – The simulated results showed great shearing strength between the chipset and the printed circuit board. The position of chip exerts great influence on the distribution of temperature field and thermal stress field of circuit board. The reasonable distribution of chip will effectively reduce the temperature extremum and stress extremum of circuit board. Originality/value – The paper analyzes and presents a discussion of the problems relating to the density of electronic packaging. The analysis process and the method of the paper provide essential help in resolving electronic device heat problems.


2014 ◽  
Vol 8 (4) ◽  
pp. 185-188
Author(s):  
Piotr Grześ

Abstract In the paper an influence of the cover angle of the pad on temperature fields of the components of the disc brake is studied. A three-dimensional finite element (FE) model of the pad-disc system was developed at the condition of equal temperatures on the contacting surfaces. Calculations were carried out for a single braking process at constant deceleration assuming that the contact pressure corresponds with the cover angle of the pad so that the moment of friction is equal in each case analysed. Evolutions and distributions of temperature both for the contact surface of the pad and the disc were computed and shown.


Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


2009 ◽  
Vol 152-153 ◽  
pp. 407-410
Author(s):  
Ilona Ilieva Iatcheva ◽  
Rumena Stancheva ◽  
Hristofor Tahrilov ◽  
Ilonka Lilianova

The aim of the work is precise coupled –electromagnetic and temperature field analysis of an induction heating system by finite element method. Presented example is referred to real induction heating system. The problem was solved as nonlinear, transient and axisymmetrical. The numerical model of the coupled fields is based on the finite element method and electromagnetic and temperature distributions have been obtained using COMSOL 3.3 software package.


Sign in / Sign up

Export Citation Format

Share Document