A new switched reluctance motor with distributed winding

Author(s):  
Qingqing Ma ◽  
Baoming Ge ◽  
Daqiang Bi ◽  
Fernando J.T.E. Ferreira ◽  
Aníbal T. de Almeida

Purpose – The purpose of this paper is to propose a new three-phase switched reluctance motor (SRM), and achieve high-torque and low-cost. This new SRM's winding configuration uses the double-layer distributed windings, which is different from the conventional SRM's single tooth coils. Design/methodology/approach – The operating principle of new SRM is analyzed, and the voltage equation and the generated torque are deduced. Finite element method (FEM) and finite element circuit coupled method are utilized to evaluate the new motor's operating performances. The two dimensional (2D) frequency response analysis model is employed in the FEM model. Based on the 2D frequency response analysis model, the magnetic field distribution, self-inductance, and mutual-inductance for the new SRM are analyzed in detail. A co-simulation model using FE analysis package and Matlab-Simulink is proposed to simulate the new SRM drive. The simulated and experimental results verify the new SRM. Findings – For the new SRM with double-layer distributed windings, a co-simulation method is proposed to analyze its characteristics. The new SRM presents lower torque ripple coefficient and generates larger torque than the conventional SRM, with three-wire and standard full bridge power converter, rather than six-wire and asymmetric half-bridge converter for conventional SRM. Originality/value – This paper proposes a new SRM with the double-layer distributed windings driven by a standard full bridge inverter. In order to calculate dynamic characteristics of the new SRM, a co-simulation method using FEM and Simulink is proposed to simulate the new SRM drive, where the power inverter and the current chopping control algorithm are implemented.

Author(s):  
Xilian Wang ◽  
Baoming Ge ◽  
Jin Wang

Purpose – The novel bearingless switched reluctance motor (BSRM) is proposed recently, which is different from the conventional BSRM in the stator structure and suspension winding arrangement. The reduced number of suspension windings makes the novel BSRM much simpler, so that the control circuit and algorithm are greatly simplified when compared to those of the conventional BSRM. This paper for the first time proposes the novel BSRM's analytic model, including the mathematical relationships among the winding currents, rotor angle, radial forces, and motor torque, to further achieve the suspending forces and torque control. The paper aims to discuss these issues. Design/methodology/approach – The magnetic equivalent circuit method is employed to obtain the self-inductances and mutual-inductances of the motor torque windings (main windings) and suspension windings (control windings). The straight flux paths are combined with the elliptical fringing flux paths to calculate the air-gap permeances, and the stored magnetic energy. Then, the mathematical expressions of radial forces and torque are derived. A novel BSRM prototype is analyzed through using the proposed analytical model and the finite element model. The results of both methods are compared to verify the proposed mathematical model. Findings – The proposed mathematical model of the novel BSRM considering unsaturated magnetic circuits is verified by finite-element analysis results. Research limitations/implications – The mathematical model represents the situation of magnetic circuit unsaturated and is not suitable for the magnetic circuit saturation. It cannot be used to control the motor which is working in the deep magnetic circuit saturation region. Practical implications – Building mathematical model is a necessary step for the motor's suspension and rotating control. The built model provides the fundamental for the preliminary control algorithm and experimental study of this novel BSRM. Originality/value – For the first time, the novel BSRM's mathematical model is proposed. It provides necessary fundamental for the motor's further analysis, design, and suspending and rotating controls.


Author(s):  
Xiaodong Sun ◽  
Jiangling Wu ◽  
Shaohua Wang ◽  
Kaikai Diao ◽  
Zebin Yang

Purpose The torque ripple and fault-tolerant capability are the two main problems for the switched reluctance motors (SRMs) in applications. The purpose of this paper, therefore, is to propose a novel 16/10 segmented SRM (SSRM) to reduce the torque ripple and improve the fault-tolerant capability in this work. Design/methodology/approach The stator of the proposed SSRM is composed of exciting and auxiliary stator poles, while the rotor consists of a series of discrete segments. The fault-tolerant and torque ripple characteristics of the proposed SSRM are studied by the finite element analysis (FEA) method. Meanwhile, the characteristics of the SSRM are compared with those of a conventional SRM with 8/6 stator/rotor poles. Finally, FEA and experimental results are provided to validate the static and dynamic characteristics of the proposed SSRM. Findings It is found that the proposed novel 16/10 SSRM for the application in the belt-driven starter generator (BSG) possesses these functions: less mutual inductance and high fault-tolerant capability. It is also found that the proposed SSRM provides lower torque ripple and higher output torque. Finally, the experimental results validate that the proposed SSRM runs with lower torque ripple, better output torque and fault-tolerant characteristics, making it an ideal candidate for the BSG and similar systems. Originality/value This paper presents the analysis of torque ripple and fault-tolerant capability for a 16/10 segmented switched reluctance motor in hybrid electric vehicles. Using FEA simulation and building a test bench to verify the proposed SSRM’s superiority in both torque ripple and fault-tolerant capability.


Sign in / Sign up

Export Citation Format

Share Document