Cyber-physical systems integration of building information models and the physical construction

2015 ◽  
Vol 22 (5) ◽  
pp. 516-535 ◽  
Author(s):  
Abiola Akanmu ◽  
Chimay J. Anumba

Purpose – In spite of the benefits of virtual models in the building and construction industry, the full potential of these models, especially in the construction and operation phases, remains largely unrealized. With the increasing developments in information and communication technology, a number of attempts have been made to extend the use of these models, through the development of integration approaches and technologies. However, the issue of integrating the virtual model and the physical construction such as to enable bi-directional coordination, has not been adequately addressed. Thus, the purpose of this paper is to investigate the application of a cyber-physical systems (CPS) approach in enhancing bi-directional coordination between virtual models and the physical construction. Design/methodology/approach – This research employs scenario development rapid prototyping to illustrate CPS integration in the construction industry, with a particular focus on facilitating bi-directional coordination. The proof-of-concept prototype systems developed were validated using a focus group consisting of industry practitioners. Findings – Bi-directional coordination between virtual models and the physical construction has the potential to improve real-time progress monitoring and control of the construction process, tracking of changes and model updates, information exchange between the design office and the job site, real-time documentation of the as-built status of high-value components and improved sustainability practices. Originality/value – This paper adds value to the construction industry by demonstrating the application of the CPS approach in enhancing bi-directional coordination between virtual models and the physical construction through the development of system architectures, scenarios and prototype systems.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Femi Emmanuel Adeosun ◽  
Ayodeji Emmanuel Oke

Purpose In recent times, the construction industry is being influenced by technological innovations when delivering a better, more effective and efficient desired project, cyber-physical systems (CPSs) offer a coupling of the physical and engineered systems by monitoring, coordinating, controlling and integrating their operations. This study aims to examine the level of awareness of professionals and usage of CPSs for construction projects in Nigerian construction industry. Design/methodology/approach The target population for this study was the professionals in the construction industry consisting Architects, Quantity Surveyors, Engineers and Builders. Data collection was through the use of a structured questionnaire administered to the target population. The data was analyzed by using statistical tools. Findings This study concluded that the construction professionals in the Nigerian construction industry are mostly aware about the heating, ventilation and air conditioning (HVAC) systems, global positioning system, microphone, speakers and camera as the most widely used CPSs in construction industry. HVAC systems was also found to be the mostly adopted technologies in the construction industry. Originality/value This study recommended that platforms that increase the awareness and encourage the usage of CPSs in construction industry should be encouraged by stakeholders concerned with management of construction projects. Such include electronic construction and adoption of blockchain technology.


2021 ◽  
Author(s):  
A.D. Weerasooriya ◽  
◽  
B.A.K.S. Perera ◽  
S.D. Gallage ◽  
P.A.P.V.D.S. Disaratna ◽  
...  

Cyber–physical systems (CPS) enable the synergistic integration of virtual models with the physical environment. CPS are being increasingly recognized because of their ability to improve information management in construction projects, make project delivery efficient, and enhance facilities management. The use of virtual models in the construction industry is growing. A quantity surveyor (QS) is responsible for estimating and monitoring construction costs from project inception to completion. The use of CPS could integrate the physical environment with the digital information available to QSs. Hence CPS has the potential to streamline the workflow related to key roles of QSs. Thus, the aim of the study was to evaluate the ability of CPS to facilitate the key roles expected of a QS. The study used a qualitative approach, consisting of 18 semi-structured interviews. The interview findings were analysed using manual content analysis. The literature review revealed the need for CPS in the construction industry and identified the key roles of QSs. The interviewees identified the existing CPS and their supportive applications, technologies and proposed new systems. The study findings provide insights on the reforms required in the key roles of QSs when using CPS.


Author(s):  
Dimitrios Boursinos ◽  
Xenofon Koutsoukos

AbstractMachine learning components such as deep neural networks are used extensively in cyber-physical systems (CPS). However, such components may introduce new types of hazards that can have disastrous consequences and need to be addressed for engineering trustworthy systems. Although deep neural networks offer advanced capabilities, they must be complemented by engineering methods and practices that allow effective integration in CPS. In this paper, we proposed an approach for assurance monitoring of learning-enabled CPS based on the conformal prediction framework. In order to allow real-time assurance monitoring, the approach employs distance learning to transform high-dimensional inputs into lower size embedding representations. By leveraging conformal prediction, the approach provides well-calibrated confidence and ensures a bounded small error rate while limiting the number of inputs for which an accurate prediction cannot be made. We demonstrate the approach using three datasets of mobile robot following a wall, speaker recognition, and traffic sign recognition. The experimental results demonstrate that the error rates are well-calibrated while the number of alarms is very small. Furthermore, the method is computationally efficient and allows real-time assurance monitoring of CPS.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


Sign in / Sign up

Export Citation Format

Share Document