MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface

2017 ◽  
Vol 27 (12) ◽  
pp. 2858-2878 ◽  
Author(s):  
B.J. Gireesha ◽  
M. Archana ◽  
Prasannakumara B.C. ◽  
R.S. Reddy Gorla ◽  
Oluwole Daniel Makinde

Purpose This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson nanofluid over a stretching surface. The combined effects of nonlinear thermal radiation, magnetic field, buoyancy forces, thermophoresis and Brownian motion are taken into consideration with convective boundary conditions. Design/methodology/approach Similarity transformations are used to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations were numerically solved using Runge–Kutta–Fehlberg fourth-fifth-order method along with shooting technique. Findings The impact of several existing physical parameters such as Casson parameter, mixed convection parameter, regular buoyancy ratio parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, temperature ratio parameter on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that the solutal component increases for Dufour Lewis number, whereas it decreases for nanofluid Lewis number. Moreover, velocity profiles decrease for Casson parameter, while the Nusselt number increases for Biot number, radiation and temperature ratio parameter. Originality/value This paper is a new work related to three-dimensional double-diffusive flow of Casson nanofluid with buoyancy and nonlinear thermal radiation effect.

1999 ◽  
Vol 400 ◽  
pp. 333-353 ◽  
Author(s):  
I. SEZAI ◽  
A. A. MOHAMAD

A three-dimensional mathematical model based on the Brinkman extended Darcy equation has been used to study double-diffusive natural convection in a fluid-saturated porous cubic enclosure subject to opposing and horizontal gradients of temperature and concentration. The flow is driven by conditions of constant temperature and concentration imposed along the two vertical sidewalls of the cubic enclosure, while the remaining walls are impermeable and adiabatic. The numerical simulations presented here span a wide range of porous thermal Rayleigh number, buoyancy ratio and Lewis number to identify the different steady-state flow patterns and bifurcations. The effect of the governing parameters on the domain of existence of the three-dimensional flow patterns is studied for opposing flows (N < 0). Comprehensive Nusselt and Sherwood number data are presented as functions of the governing parameters. The present results indicate that the double-diffusive flow in enclosures with opposing buoyancy forces is strictly three-dimensional for a certain range of parameters. At high Lewis numbers multiple dipole vortices form in the transverse planes near the horizontal top and bottom surfaces, which the two-dimensional models fail to detect. The dipolar vortex structures obtained are similar to those created in laboratory experiments by the injection of fluid into a stratified medium.


2018 ◽  
Vol 14 (2) ◽  
pp. 261-283 ◽  
Author(s):  
O.K. Koriko ◽  
I.L. Animasaun ◽  
M. Gnaneswara Reddy ◽  
N. Sandeep

Purpose The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm alumina-water nanofluid within the thin boundary layer in the presence of quartic autocatalytic kind of chemical reaction effects, and to unravel the effects of a magnetic field parameter, random motion of the tiny nanoparticles and volume fraction on the flow. Design/methodology/approach The chemical reaction between homogeneous (Eyring-Powell 36 nm alumina-water) bulk fluid and heterogeneous (three molecules of the catalyst at the surface) in the flow of magnetohydrodynamic three-dimensional flow is modeled as a quartic autocatalytic kind of chemical reaction. The electromagnetic radiation which occurs within the boundary layer is treated as the nonlinear form due to the fact that Taylor series expansion may not give full details of such effects within the boundary layer. With the aid of appropriate similarity variables, the nonlinear coupled system of partial differential equation which models the flow was reduced to ordinary differential equation boundary value problem. Findings A favorable agreement of the present results is obtained by comparing it for a limiting case with the published results; hence, reliable results are presented. The concentration of homogeneous bulk fluid (Eyring-Powell nanofluid) increases and decreases with ϕ and Pr, respectively. The increase in the value of magnetic field parameter causes vertical and horizontal velocities of the flow within the boundary layer to decrease significantly. The decrease in the vertical and horizontal velocities of Eyring-Powell nanofluid flow within the boundary layer is guaranteed due to an increase in the value of M. Concentration of homogeneous fluid increases, while the concentration of the heterogeneous catalyst at the wall decreases with M. Originality/value Considering the industrial applications of thermal stratification in solar engineering and polymer processing where the behavior of the flow possesses attributes of Eyring-Powell 36 nm alumina-water, this paper presents the solution of the flow problem considering 36 nm alumina nanoparticles, thermophoresis, stratification of thermal energy, Brownian motion and nonlinear thermal radiation. In addition, the aim and objectives of this paper fill such vacuum in the industry.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelraheem M. Aly ◽  
Ehab Mahmoud Mohamed

Purpose The purpose of this study is to use an incompressible smoothed particle hydrodynamics (ISPH) method for simulating buoyancy ratio and magnetic field effects on double diffusive natural convection of a cooper-water nanofluid in a cavity. An open pipe is embedded inside the center of a cavity, and it is occupied by solid particles. Design/methodology/approach The dimensionless governing equations in Lagrangian form were solved by ISPH method. Two different thermal conditions were considered for the solid particles. The actions of the solid particles were tracked inside a cavity. The effects of Hartman parameter, Rayleigh number, nanoparticles volume fraction and Lewis number on features of heat and mass transfer and flow field were tested. Findings The results showed that the buoyancy ratio changes the directions of the solid particles diffusion in a cavity. The hot solid particles were raised upwards at aiding mode (N > 0) and downwards at an opposing mode (N < 0). A comparison is made with experimental and numerical simulation results, and it showed a well agreement. Originality/value Novel studies for the impacts of buoyancy ratio on the diffusion of solid particles embedded in an open pipe during double-diffusive flow were conducted.


2002 ◽  
Vol 464 ◽  
pp. 311-344 ◽  
Author(s):  
I. SEZAI

In the present study the existence of multiple three-dimensional double-diffusive flow patterns in a horizontal rectangular porous cavity of a square cross-section, having horizontal aspect ratios Ax = Ay = 2 is investigated numerically. Opposing vertical gradients of temperature and concentration are applied between the two horizontal walls of the cavity, where the solute gradient is destabilizing against a stabilizing temperature gradient. All vertical walls are considered to be impermeable and adiabatic. The Brinkman and Forchheimer terms are included in the momentum equations where the convective terms are retained. The effect of the buoyancy ratio, N, thermal Rayleigh number, RaT and Lewis number, Le, on the formation of multiple flow patterns is investigated over a wide range of parameters. Altogether 36 symmetric flow structures have been identified when each of the parameters N, RaT, and Le is varied independently, keeping the others as constants. The results of the calculations are presented in terms of the average Sherwood number curves consisting of different solution branches, where transitions between the branches are indicated. The flow patterns are classified according to their symmetry properties and the type of symmetries broken or preserved are identified during the bifurcation processes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


2018 ◽  
Vol 57 (3) ◽  
pp. 1927-1935 ◽  
Author(s):  
B. Mahanthesh ◽  
B.J. Gireesha ◽  
G.T. Thammanna ◽  
S.A. Shehzad ◽  
F.M. Abbasi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document